Improved Bat Algorithm for UAV Path Planning in Three-Dimensional Space
This paper describes the flight path planning for unmanned aerial vehicles (UAVs) based on the advanced swarm optimization algorithm of the bat algorithm (BA) in a static environment. The main purpose of this work is that the UAVs can obtain an accident-free, shorter, and safer flight path between t...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.20100-20116 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20116 |
---|---|
container_issue | |
container_start_page | 20100 |
container_title | IEEE access |
container_volume | 9 |
creator | Zhou, Xianjin Gao, Fei Fang, Xi Lan, Zehong |
description | This paper describes the flight path planning for unmanned aerial vehicles (UAVs) based on the advanced swarm optimization algorithm of the bat algorithm (BA) in a static environment. The main purpose of this work is that the UAVs can obtain an accident-free, shorter, and safer flight path between the starting point and the endpoint in the complex three-dimensional battlefield environment. Based on the characteristics of the standard BA and the artificial bee colony algorithm (ABC), a new modification of the BA algorithm is proposed in this work, namely, the improved bat algorithm integrated into the ABC algorithm (IBA). The IBA mainly uses ABC to modify the BA and solves the problem of poor local search ability of the BA. This article demonstrates the convergence of the IBA and performs simulations in MATLAB environment to verify its effectiveness. The simulations showed that the time required for the IBA to obtain the optimum solution is approximately 50% lower than the BA, and that the quality of the optimum solution is about 14% higher than the ABC. Furthermore, by comparing with other traditional and improved swarm intelligent path planning algorithms, the IBA can plan a faster, shorter, safer, accident-free flight path for UAVs. Finally, this article proves that IBA also has good performance in optimizing functions and has broad application potential. |
doi_str_mv | 10.1109/ACCESS.2021.3054179 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486593999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9334996</ieee_id><doaj_id>oai_doaj_org_article_25f42e3ad8c84ee9a400dabbd8663414</doaj_id><sourcerecordid>2486593999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-5042a8aab8d0760655adffe773397e4afb017b23f695ddd55bb764fe16c076043</originalsourceid><addsrcrecordid>eNpNUdtKw0AQDaKgqF_gy4LPqXtP9rHWW0FQaOvrMsnOtlvSbN1Ewb83NSLOywzDOWcuJ8uuGJ0wRs3NdDa7XywmnHI2EVRJVpij7IwzbXKhhD7-V59ml123pUOUQ0sVZ9njfLdP8RMduYWeTJt1TKHf7IiPiaymb-QV-g15baBtQ7smoSXLTULM78IO2y7EFhqy2EONF9mJh6bDy998nq0e7pezp_z55XE-mz7nteJlnysqOZQAVelooalWCpz3WBRCmAIl-IqyouLCD9s555SqqkJLj0zXB7wU59l81HURtnafwg7Sl40Q7E8jprWF1Ie6QcuVlxwFuLIuJaIBSamDqnKl1kKyg9b1qDV84P0Du95u40caTuosl6VWRhhjBpQYUXWKXZfQ_01l1B4MsKMB9mCA_TVgYF2NrICIfwwjhDRGi2-lcH-z</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486593999</pqid></control><display><type>article</type><title>Improved Bat Algorithm for UAV Path Planning in Three-Dimensional Space</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhou, Xianjin ; Gao, Fei ; Fang, Xi ; Lan, Zehong</creator><creatorcontrib>Zhou, Xianjin ; Gao, Fei ; Fang, Xi ; Lan, Zehong</creatorcontrib><description>This paper describes the flight path planning for unmanned aerial vehicles (UAVs) based on the advanced swarm optimization algorithm of the bat algorithm (BA) in a static environment. The main purpose of this work is that the UAVs can obtain an accident-free, shorter, and safer flight path between the starting point and the endpoint in the complex three-dimensional battlefield environment. Based on the characteristics of the standard BA and the artificial bee colony algorithm (ABC), a new modification of the BA algorithm is proposed in this work, namely, the improved bat algorithm integrated into the ABC algorithm (IBA). The IBA mainly uses ABC to modify the BA and solves the problem of poor local search ability of the BA. This article demonstrates the convergence of the IBA and performs simulations in MATLAB environment to verify its effectiveness. The simulations showed that the time required for the IBA to obtain the optimum solution is approximately 50% lower than the BA, and that the quality of the optimum solution is about 14% higher than the ABC. Furthermore, by comparing with other traditional and improved swarm intelligent path planning algorithms, the IBA can plan a faster, shorter, safer, accident-free flight path for UAVs. Finally, this article proves that IBA also has good performance in optimizing functions and has broad application potential.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3054179</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accidents ; Algorithms ; Battlefield environment ; Battlefields ; Convergence ; Flight paths ; Flight planning ; Free flight ; Heuristic algorithms ; improved bat algorithm ; local search ; Optimization ; Particle swarm optimization ; Path planning ; Planning ; Radar ; Search algorithms ; Swarm intelligence ; Unmanned aerial vehicles</subject><ispartof>IEEE access, 2021, Vol.9, p.20100-20116</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-5042a8aab8d0760655adffe773397e4afb017b23f695ddd55bb764fe16c076043</citedby><cites>FETCH-LOGICAL-c528t-5042a8aab8d0760655adffe773397e4afb017b23f695ddd55bb764fe16c076043</cites><orcidid>0000-0003-1130-1477 ; 0000-0003-2266-7263 ; 0000-0002-3783-2041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9334996$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhou, Xianjin</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Fang, Xi</creatorcontrib><creatorcontrib>Lan, Zehong</creatorcontrib><title>Improved Bat Algorithm for UAV Path Planning in Three-Dimensional Space</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper describes the flight path planning for unmanned aerial vehicles (UAVs) based on the advanced swarm optimization algorithm of the bat algorithm (BA) in a static environment. The main purpose of this work is that the UAVs can obtain an accident-free, shorter, and safer flight path between the starting point and the endpoint in the complex three-dimensional battlefield environment. Based on the characteristics of the standard BA and the artificial bee colony algorithm (ABC), a new modification of the BA algorithm is proposed in this work, namely, the improved bat algorithm integrated into the ABC algorithm (IBA). The IBA mainly uses ABC to modify the BA and solves the problem of poor local search ability of the BA. This article demonstrates the convergence of the IBA and performs simulations in MATLAB environment to verify its effectiveness. The simulations showed that the time required for the IBA to obtain the optimum solution is approximately 50% lower than the BA, and that the quality of the optimum solution is about 14% higher than the ABC. Furthermore, by comparing with other traditional and improved swarm intelligent path planning algorithms, the IBA can plan a faster, shorter, safer, accident-free flight path for UAVs. Finally, this article proves that IBA also has good performance in optimizing functions and has broad application potential.</description><subject>Accidents</subject><subject>Algorithms</subject><subject>Battlefield environment</subject><subject>Battlefields</subject><subject>Convergence</subject><subject>Flight paths</subject><subject>Flight planning</subject><subject>Free flight</subject><subject>Heuristic algorithms</subject><subject>improved bat algorithm</subject><subject>local search</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Path planning</subject><subject>Planning</subject><subject>Radar</subject><subject>Search algorithms</subject><subject>Swarm intelligence</subject><subject>Unmanned aerial vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKw0AQDaKgqF_gy4LPqXtP9rHWW0FQaOvrMsnOtlvSbN1Ewb83NSLOywzDOWcuJ8uuGJ0wRs3NdDa7XywmnHI2EVRJVpij7IwzbXKhhD7-V59ml123pUOUQ0sVZ9njfLdP8RMduYWeTJt1TKHf7IiPiaymb-QV-g15baBtQ7smoSXLTULM78IO2y7EFhqy2EONF9mJh6bDy998nq0e7pezp_z55XE-mz7nteJlnysqOZQAVelooalWCpz3WBRCmAIl-IqyouLCD9s555SqqkJLj0zXB7wU59l81HURtnafwg7Sl40Q7E8jprWF1Ie6QcuVlxwFuLIuJaIBSamDqnKl1kKyg9b1qDV84P0Du95u40caTuosl6VWRhhjBpQYUXWKXZfQ_01l1B4MsKMB9mCA_TVgYF2NrICIfwwjhDRGi2-lcH-z</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhou, Xianjin</creator><creator>Gao, Fei</creator><creator>Fang, Xi</creator><creator>Lan, Zehong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1130-1477</orcidid><orcidid>https://orcid.org/0000-0003-2266-7263</orcidid><orcidid>https://orcid.org/0000-0002-3783-2041</orcidid></search><sort><creationdate>2021</creationdate><title>Improved Bat Algorithm for UAV Path Planning in Three-Dimensional Space</title><author>Zhou, Xianjin ; Gao, Fei ; Fang, Xi ; Lan, Zehong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-5042a8aab8d0760655adffe773397e4afb017b23f695ddd55bb764fe16c076043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accidents</topic><topic>Algorithms</topic><topic>Battlefield environment</topic><topic>Battlefields</topic><topic>Convergence</topic><topic>Flight paths</topic><topic>Flight planning</topic><topic>Free flight</topic><topic>Heuristic algorithms</topic><topic>improved bat algorithm</topic><topic>local search</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Path planning</topic><topic>Planning</topic><topic>Radar</topic><topic>Search algorithms</topic><topic>Swarm intelligence</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xianjin</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Fang, Xi</creatorcontrib><creatorcontrib>Lan, Zehong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xianjin</au><au>Gao, Fei</au><au>Fang, Xi</au><au>Lan, Zehong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Bat Algorithm for UAV Path Planning in Three-Dimensional Space</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>20100</spage><epage>20116</epage><pages>20100-20116</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper describes the flight path planning for unmanned aerial vehicles (UAVs) based on the advanced swarm optimization algorithm of the bat algorithm (BA) in a static environment. The main purpose of this work is that the UAVs can obtain an accident-free, shorter, and safer flight path between the starting point and the endpoint in the complex three-dimensional battlefield environment. Based on the characteristics of the standard BA and the artificial bee colony algorithm (ABC), a new modification of the BA algorithm is proposed in this work, namely, the improved bat algorithm integrated into the ABC algorithm (IBA). The IBA mainly uses ABC to modify the BA and solves the problem of poor local search ability of the BA. This article demonstrates the convergence of the IBA and performs simulations in MATLAB environment to verify its effectiveness. The simulations showed that the time required for the IBA to obtain the optimum solution is approximately 50% lower than the BA, and that the quality of the optimum solution is about 14% higher than the ABC. Furthermore, by comparing with other traditional and improved swarm intelligent path planning algorithms, the IBA can plan a faster, shorter, safer, accident-free flight path for UAVs. Finally, this article proves that IBA also has good performance in optimizing functions and has broad application potential.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3054179</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1130-1477</orcidid><orcidid>https://orcid.org/0000-0003-2266-7263</orcidid><orcidid>https://orcid.org/0000-0002-3783-2041</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.20100-20116 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2486593999 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accidents Algorithms Battlefield environment Battlefields Convergence Flight paths Flight planning Free flight Heuristic algorithms improved bat algorithm local search Optimization Particle swarm optimization Path planning Planning Radar Search algorithms Swarm intelligence Unmanned aerial vehicles |
title | Improved Bat Algorithm for UAV Path Planning in Three-Dimensional Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Bat%20Algorithm%20for%20UAV%20Path%20Planning%20in%20Three-Dimensional%20Space&rft.jtitle=IEEE%20access&rft.au=Zhou,%20Xianjin&rft.date=2021&rft.volume=9&rft.spage=20100&rft.epage=20116&rft.pages=20100-20116&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3054179&rft_dat=%3Cproquest_cross%3E2486593999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486593999&rft_id=info:pmid/&rft_ieee_id=9334996&rft_doaj_id=oai_doaj_org_article_25f42e3ad8c84ee9a400dabbd8663414&rfr_iscdi=true |