Energy Planning for Autonomous Driving of an Over-Actuated Road Vehicle

In this work, an energy planning strategy is proposed for over-actuated unmanned road vehicles (URVs) having redundant steering configurations. In fact, indicators on the road geometry, the actuation redundancy, the optimal velocity profile, and the driving mode are evaluated for each segment of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2021-02, Vol.22 (2), p.1114-1124
Hauptverfasser: Bensekrane, Ismail, Kumar, Pushpendra, Melingui, Achille, Coelen, Vincent, Amara, Yacine, Chettibi, Taha, Merzouki, Rochdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1124
container_issue 2
container_start_page 1114
container_title IEEE transactions on intelligent transportation systems
container_volume 22
creator Bensekrane, Ismail
Kumar, Pushpendra
Melingui, Achille
Coelen, Vincent
Amara, Yacine
Chettibi, Taha
Merzouki, Rochdi
description In this work, an energy planning strategy is proposed for over-actuated unmanned road vehicles (URVs) having redundant steering configurations. In fact, indicators on the road geometry, the actuation redundancy, the optimal velocity profile, and the driving mode are evaluated for each segment of the URV's trajectory. To reach this objective, a power consumption estimation model is developed for the URV. Due to the presence of unknown dynamic parameters of the URV and uncertainties about its interaction with the environment, an artificial intelligence (AI) technique, based on data-learning qualitative method, is used for the power consumption estimation, namely Adaptive Neuro Fuzzy Inference System (ANFIS). The ANFIS model is obtained using trained data from a Real URV dynamics. Then, an energy digraph is built with all feasible configurations taking into account the kinematic and dynamic constraints based on a 3D grid map setup, according to velocity, arc-length, and driving mode. In this weighted directed graph, the edges describe the consumed energy by the URV along a segment of a trajectory. The vertices describe the start and end points of each segment. Subsequently, an optimization algorithm is applied on the digraph to get a global optimal solution combining driving mode, power consumption, and velocity profile of the URV. The obtained results are compared with the dynamic programming method for global offline optimization. Finally, the obtained simulation and experimental results, applied on RobuCar URV, highlight the effectiveness of the proposed energy planning.
doi_str_mv 10.1109/TITS.2019.2963544
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2486591967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8956069</ieee_id><sourcerecordid>2486591967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-8b39fe010aa90c20c9cdda81934e996bc28b22bcbf06a1a6a09690879cee168f3</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhoMoWKsPIF4WPHlInd1ktzvHUmtbKFS0el02m02bkmbrJin07U1I8TTDz_cPwxcEjxRGlAK-bpabrxEDiiOGIuJxfBUMKOcyBKDiuttZHCJwuA3uqmrfpjGndBDMZ6X12zP5KHRZ5uWWZM6TSVO70h1cU5E3n5-62GVEl2R9sj6cmLrRtU3Jp9Mp-bG73BT2PrjJdFHZh8scBt_vs810Ea7W8-V0sgpNxMZ1KJMIMwsUtEYwDAyaNNWSYhRbRJEYJhPGEpNkIDTVQgMKBDlGYy0VMouGwUt_d6cLdfT5QfuzcjpXi8lKdRkwzoSE6ERb9rlnj979Nraq1d41vmzfUyyWgiNFMW4p2lPGu6ryNvs_S0F1blXnVnVu1cVt23nqO7m19p-XyAUIjP4AeZBzqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486591967</pqid></control><display><type>article</type><title>Energy Planning for Autonomous Driving of an Over-Actuated Road Vehicle</title><source>IEEE Electronic Library (IEL)</source><creator>Bensekrane, Ismail ; Kumar, Pushpendra ; Melingui, Achille ; Coelen, Vincent ; Amara, Yacine ; Chettibi, Taha ; Merzouki, Rochdi</creator><creatorcontrib>Bensekrane, Ismail ; Kumar, Pushpendra ; Melingui, Achille ; Coelen, Vincent ; Amara, Yacine ; Chettibi, Taha ; Merzouki, Rochdi</creatorcontrib><description>In this work, an energy planning strategy is proposed for over-actuated unmanned road vehicles (URVs) having redundant steering configurations. In fact, indicators on the road geometry, the actuation redundancy, the optimal velocity profile, and the driving mode are evaluated for each segment of the URV's trajectory. To reach this objective, a power consumption estimation model is developed for the URV. Due to the presence of unknown dynamic parameters of the URV and uncertainties about its interaction with the environment, an artificial intelligence (AI) technique, based on data-learning qualitative method, is used for the power consumption estimation, namely Adaptive Neuro Fuzzy Inference System (ANFIS). The ANFIS model is obtained using trained data from a Real URV dynamics. Then, an energy digraph is built with all feasible configurations taking into account the kinematic and dynamic constraints based on a 3D grid map setup, according to velocity, arc-length, and driving mode. In this weighted directed graph, the edges describe the consumed energy by the URV along a segment of a trajectory. The vertices describe the start and end points of each segment. Subsequently, an optimization algorithm is applied on the digraph to get a global optimal solution combining driving mode, power consumption, and velocity profile of the URV. The obtained results are compared with the dynamic programming method for global offline optimization. Finally, the obtained simulation and experimental results, applied on RobuCar URV, highlight the effectiveness of the proposed energy planning.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2019.2963544</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuation ; actuation redundancy ; Actuators ; Adaptive systems ; Algorithms ; Apexes ; Artificial intelligence ; Artificial neural networks ; Automatic Control Engineering ; Computer Science ; Configurations ; data-learning ; Dynamic programming ; Energy planning ; Fuzzy logic ; Graph theory ; Kinematics ; Modeling and Simulation ; Optimization ; over-actuated unmanned road vehicle ; Parameter uncertainty ; Planning ; Power consumption ; Power demand ; Qualitative analysis ; Redundancy ; Roads ; Robotics ; Segments ; Steering ; Systems and Control ; Velocity distribution ; Wheels</subject><ispartof>IEEE transactions on intelligent transportation systems, 2021-02, Vol.22 (2), p.1114-1124</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-8b39fe010aa90c20c9cdda81934e996bc28b22bcbf06a1a6a09690879cee168f3</citedby><cites>FETCH-LOGICAL-c327t-8b39fe010aa90c20c9cdda81934e996bc28b22bcbf06a1a6a09690879cee168f3</cites><orcidid>0000-0001-8920-2415 ; 0000-0001-6589-7590 ; 0000-0001-9097-851X ; 0000-0003-2470-7708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8956069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8956069$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02526803$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bensekrane, Ismail</creatorcontrib><creatorcontrib>Kumar, Pushpendra</creatorcontrib><creatorcontrib>Melingui, Achille</creatorcontrib><creatorcontrib>Coelen, Vincent</creatorcontrib><creatorcontrib>Amara, Yacine</creatorcontrib><creatorcontrib>Chettibi, Taha</creatorcontrib><creatorcontrib>Merzouki, Rochdi</creatorcontrib><title>Energy Planning for Autonomous Driving of an Over-Actuated Road Vehicle</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>In this work, an energy planning strategy is proposed for over-actuated unmanned road vehicles (URVs) having redundant steering configurations. In fact, indicators on the road geometry, the actuation redundancy, the optimal velocity profile, and the driving mode are evaluated for each segment of the URV's trajectory. To reach this objective, a power consumption estimation model is developed for the URV. Due to the presence of unknown dynamic parameters of the URV and uncertainties about its interaction with the environment, an artificial intelligence (AI) technique, based on data-learning qualitative method, is used for the power consumption estimation, namely Adaptive Neuro Fuzzy Inference System (ANFIS). The ANFIS model is obtained using trained data from a Real URV dynamics. Then, an energy digraph is built with all feasible configurations taking into account the kinematic and dynamic constraints based on a 3D grid map setup, according to velocity, arc-length, and driving mode. In this weighted directed graph, the edges describe the consumed energy by the URV along a segment of a trajectory. The vertices describe the start and end points of each segment. Subsequently, an optimization algorithm is applied on the digraph to get a global optimal solution combining driving mode, power consumption, and velocity profile of the URV. The obtained results are compared with the dynamic programming method for global offline optimization. Finally, the obtained simulation and experimental results, applied on RobuCar URV, highlight the effectiveness of the proposed energy planning.</description><subject>Actuation</subject><subject>actuation redundancy</subject><subject>Actuators</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Apexes</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automatic Control Engineering</subject><subject>Computer Science</subject><subject>Configurations</subject><subject>data-learning</subject><subject>Dynamic programming</subject><subject>Energy planning</subject><subject>Fuzzy logic</subject><subject>Graph theory</subject><subject>Kinematics</subject><subject>Modeling and Simulation</subject><subject>Optimization</subject><subject>over-actuated unmanned road vehicle</subject><subject>Parameter uncertainty</subject><subject>Planning</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>Qualitative analysis</subject><subject>Redundancy</subject><subject>Roads</subject><subject>Robotics</subject><subject>Segments</subject><subject>Steering</subject><subject>Systems and Control</subject><subject>Velocity distribution</subject><subject>Wheels</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AQhoMoWKsPIF4WPHlInd1ktzvHUmtbKFS0el02m02bkmbrJin07U1I8TTDz_cPwxcEjxRGlAK-bpabrxEDiiOGIuJxfBUMKOcyBKDiuttZHCJwuA3uqmrfpjGndBDMZ6X12zP5KHRZ5uWWZM6TSVO70h1cU5E3n5-62GVEl2R9sj6cmLrRtU3Jp9Mp-bG73BT2PrjJdFHZh8scBt_vs810Ea7W8-V0sgpNxMZ1KJMIMwsUtEYwDAyaNNWSYhRbRJEYJhPGEpNkIDTVQgMKBDlGYy0VMouGwUt_d6cLdfT5QfuzcjpXi8lKdRkwzoSE6ERb9rlnj979Nraq1d41vmzfUyyWgiNFMW4p2lPGu6ryNvs_S0F1blXnVnVu1cVt23nqO7m19p-XyAUIjP4AeZBzqQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Bensekrane, Ismail</creator><creator>Kumar, Pushpendra</creator><creator>Melingui, Achille</creator><creator>Coelen, Vincent</creator><creator>Amara, Yacine</creator><creator>Chettibi, Taha</creator><creator>Merzouki, Rochdi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8920-2415</orcidid><orcidid>https://orcid.org/0000-0001-6589-7590</orcidid><orcidid>https://orcid.org/0000-0001-9097-851X</orcidid><orcidid>https://orcid.org/0000-0003-2470-7708</orcidid></search><sort><creationdate>20210201</creationdate><title>Energy Planning for Autonomous Driving of an Over-Actuated Road Vehicle</title><author>Bensekrane, Ismail ; Kumar, Pushpendra ; Melingui, Achille ; Coelen, Vincent ; Amara, Yacine ; Chettibi, Taha ; Merzouki, Rochdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-8b39fe010aa90c20c9cdda81934e996bc28b22bcbf06a1a6a09690879cee168f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuation</topic><topic>actuation redundancy</topic><topic>Actuators</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Apexes</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automatic Control Engineering</topic><topic>Computer Science</topic><topic>Configurations</topic><topic>data-learning</topic><topic>Dynamic programming</topic><topic>Energy planning</topic><topic>Fuzzy logic</topic><topic>Graph theory</topic><topic>Kinematics</topic><topic>Modeling and Simulation</topic><topic>Optimization</topic><topic>over-actuated unmanned road vehicle</topic><topic>Parameter uncertainty</topic><topic>Planning</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>Qualitative analysis</topic><topic>Redundancy</topic><topic>Roads</topic><topic>Robotics</topic><topic>Segments</topic><topic>Steering</topic><topic>Systems and Control</topic><topic>Velocity distribution</topic><topic>Wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bensekrane, Ismail</creatorcontrib><creatorcontrib>Kumar, Pushpendra</creatorcontrib><creatorcontrib>Melingui, Achille</creatorcontrib><creatorcontrib>Coelen, Vincent</creatorcontrib><creatorcontrib>Amara, Yacine</creatorcontrib><creatorcontrib>Chettibi, Taha</creatorcontrib><creatorcontrib>Merzouki, Rochdi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bensekrane, Ismail</au><au>Kumar, Pushpendra</au><au>Melingui, Achille</au><au>Coelen, Vincent</au><au>Amara, Yacine</au><au>Chettibi, Taha</au><au>Merzouki, Rochdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Planning for Autonomous Driving of an Over-Actuated Road Vehicle</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>22</volume><issue>2</issue><spage>1114</spage><epage>1124</epage><pages>1114-1124</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>In this work, an energy planning strategy is proposed for over-actuated unmanned road vehicles (URVs) having redundant steering configurations. In fact, indicators on the road geometry, the actuation redundancy, the optimal velocity profile, and the driving mode are evaluated for each segment of the URV's trajectory. To reach this objective, a power consumption estimation model is developed for the URV. Due to the presence of unknown dynamic parameters of the URV and uncertainties about its interaction with the environment, an artificial intelligence (AI) technique, based on data-learning qualitative method, is used for the power consumption estimation, namely Adaptive Neuro Fuzzy Inference System (ANFIS). The ANFIS model is obtained using trained data from a Real URV dynamics. Then, an energy digraph is built with all feasible configurations taking into account the kinematic and dynamic constraints based on a 3D grid map setup, according to velocity, arc-length, and driving mode. In this weighted directed graph, the edges describe the consumed energy by the URV along a segment of a trajectory. The vertices describe the start and end points of each segment. Subsequently, an optimization algorithm is applied on the digraph to get a global optimal solution combining driving mode, power consumption, and velocity profile of the URV. The obtained results are compared with the dynamic programming method for global offline optimization. Finally, the obtained simulation and experimental results, applied on RobuCar URV, highlight the effectiveness of the proposed energy planning.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2019.2963544</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8920-2415</orcidid><orcidid>https://orcid.org/0000-0001-6589-7590</orcidid><orcidid>https://orcid.org/0000-0001-9097-851X</orcidid><orcidid>https://orcid.org/0000-0003-2470-7708</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2021-02, Vol.22 (2), p.1114-1124
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2486591967
source IEEE Electronic Library (IEL)
subjects Actuation
actuation redundancy
Actuators
Adaptive systems
Algorithms
Apexes
Artificial intelligence
Artificial neural networks
Automatic Control Engineering
Computer Science
Configurations
data-learning
Dynamic programming
Energy planning
Fuzzy logic
Graph theory
Kinematics
Modeling and Simulation
Optimization
over-actuated unmanned road vehicle
Parameter uncertainty
Planning
Power consumption
Power demand
Qualitative analysis
Redundancy
Roads
Robotics
Segments
Steering
Systems and Control
Velocity distribution
Wheels
title Energy Planning for Autonomous Driving of an Over-Actuated Road Vehicle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Planning%20for%20Autonomous%20Driving%20of%20an%20Over-Actuated%20Road%20Vehicle&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Bensekrane,%20Ismail&rft.date=2021-02-01&rft.volume=22&rft.issue=2&rft.spage=1114&rft.epage=1124&rft.pages=1114-1124&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2019.2963544&rft_dat=%3Cproquest_RIE%3E2486591967%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486591967&rft_id=info:pmid/&rft_ieee_id=8956069&rfr_iscdi=true