Neural Estimators for Conditional Mutual Information Using Nearest Neighbors Sampling
The estimation of mutual information (MI) or conditional mutual information (CMI) from a set of samples is a longstanding problem. A recent line of work in this area has leveraged the approximation power of artificial neural networks and has shown improvements over conventional methods. One importan...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2021, Vol.69, p.766-780 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 780 |
---|---|
container_issue | |
container_start_page | 766 |
container_title | IEEE transactions on signal processing |
container_volume | 69 |
creator | Molavipour, Sina Bassi, German Skoglund, Mikael |
description | The estimation of mutual information (MI) or conditional mutual information (CMI) from a set of samples is a longstanding problem. A recent line of work in this area has leveraged the approximation power of artificial neural networks and has shown improvements over conventional methods. One important challenge in this new approach is the need to obtain, given the original dataset, a different set where the samples are distributed according to a specific product density function. This is particularly challenging when estimating CMI. In this paper, we introduce a new technique, based on k nearest neighbors (k-NN), to perform the resampling and derive high-confidence concentration bounds for the sample average. Then the technique is employed to train a neural network classifier and the CMI is estimated accordingly. We propose three estimators using this technique and prove their consistency, make a comparison between them and similar approaches in the literature, and experimentally show improvements in estimating the CMI in terms of accuracy and variance of the estimators. |
doi_str_mv | 10.1109/TSP.2021.3050564 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2486591864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9319549</ieee_id><sourcerecordid>2486591864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-af00c711b284ac37221f553cbf345b28664f579d059478937bd145d32bf159ad3</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKfvgi8Fnzvz3eZxzK_BnMI28S2kbbJlbk1NWsT_3oyOPZ1wz-9ccg8AtwiOEILiYbn4GGGI0YhABhmnZ2CABEUppBk_j2_ISMry7OsSXIWwhRBRKvgArOa682qXPIXW7lXrfEiM88nE1ZVtrauj9da1XZRpHY2IxGGyCrZeJ3OtvA5tVLveFIfoQu2bXbSuwYVRu6BvjjoEq-en5eQ1nb2_TCfjWVoSLNpUGQjLDKEC51SVJMMYGcZIWRhCWRxyTg3LRAWZoFkuSFZUiLKK4MIgJlRFhiDt94Zf3XSFbHw8wv9Jp6x8tJ9j6fxafrcbiQWGPI_8fc833v108e9y6zofjwwS05wzgXJOIwV7qvQuBK_NaS-C8lC2jGXLQ9nyWHaM3PURq7U-4YIgwagg_2BVesQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486591864</pqid></control><display><type>article</type><title>Neural Estimators for Conditional Mutual Information Using Nearest Neighbors Sampling</title><source>IEEE/IET Electronic Library</source><creator>Molavipour, Sina ; Bassi, German ; Skoglund, Mikael</creator><creatorcontrib>Molavipour, Sina ; Bassi, German ; Skoglund, Mikael</creatorcontrib><description>The estimation of mutual information (MI) or conditional mutual information (CMI) from a set of samples is a longstanding problem. A recent line of work in this area has leveraged the approximation power of artificial neural networks and has shown improvements over conventional methods. One important challenge in this new approach is the need to obtain, given the original dataset, a different set where the samples are distributed according to a specific product density function. This is particularly challenging when estimating CMI. In this paper, we introduce a new technique, based on k nearest neighbors (k-NN), to perform the resampling and derive high-confidence concentration bounds for the sample average. Then the technique is employed to train a neural network classifier and the CMI is estimated accordingly. We propose three estimators using this technique and prove their consistency, make a comparison between them and similar approaches in the literature, and experimentally show improvements in estimating the CMI in terms of accuracy and variance of the estimators.</description><identifier>ISSN: 1053-587X</identifier><identifier>ISSN: 1941-0476</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2021.3050564</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Channel estimation ; Codes ; Conditional mutual information ; Confidence ; Density functional theory ; Estimation ; Estimators ; Mutual information ; Nearest neighbor methods ; nearest neighbors ; Neural networks ; Random variables ; Resampling</subject><ispartof>IEEE transactions on signal processing, 2021, Vol.69, p.766-780</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-af00c711b284ac37221f553cbf345b28664f579d059478937bd145d32bf159ad3</citedby><cites>FETCH-LOGICAL-c329t-af00c711b284ac37221f553cbf345b28664f579d059478937bd145d32bf159ad3</cites><orcidid>0000-0002-7926-5081 ; 0000-0002-6247-1217 ; 0000-0002-8974-6591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9319549$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9319549$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292068$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Molavipour, Sina</creatorcontrib><creatorcontrib>Bassi, German</creatorcontrib><creatorcontrib>Skoglund, Mikael</creatorcontrib><title>Neural Estimators for Conditional Mutual Information Using Nearest Neighbors Sampling</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The estimation of mutual information (MI) or conditional mutual information (CMI) from a set of samples is a longstanding problem. A recent line of work in this area has leveraged the approximation power of artificial neural networks and has shown improvements over conventional methods. One important challenge in this new approach is the need to obtain, given the original dataset, a different set where the samples are distributed according to a specific product density function. This is particularly challenging when estimating CMI. In this paper, we introduce a new technique, based on k nearest neighbors (k-NN), to perform the resampling and derive high-confidence concentration bounds for the sample average. Then the technique is employed to train a neural network classifier and the CMI is estimated accordingly. We propose three estimators using this technique and prove their consistency, make a comparison between them and similar approaches in the literature, and experimentally show improvements in estimating the CMI in terms of accuracy and variance of the estimators.</description><subject>Artificial neural networks</subject><subject>Channel estimation</subject><subject>Codes</subject><subject>Conditional mutual information</subject><subject>Confidence</subject><subject>Density functional theory</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Mutual information</subject><subject>Nearest neighbor methods</subject><subject>nearest neighbors</subject><subject>Neural networks</subject><subject>Random variables</subject><subject>Resampling</subject><issn>1053-587X</issn><issn>1941-0476</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOKfvgi8Fnzvz3eZxzK_BnMI28S2kbbJlbk1NWsT_3oyOPZ1wz-9ccg8AtwiOEILiYbn4GGGI0YhABhmnZ2CABEUppBk_j2_ISMry7OsSXIWwhRBRKvgArOa682qXPIXW7lXrfEiM88nE1ZVtrauj9da1XZRpHY2IxGGyCrZeJ3OtvA5tVLveFIfoQu2bXbSuwYVRu6BvjjoEq-en5eQ1nb2_TCfjWVoSLNpUGQjLDKEC51SVJMMYGcZIWRhCWRxyTg3LRAWZoFkuSFZUiLKK4MIgJlRFhiDt94Zf3XSFbHw8wv9Jp6x8tJ9j6fxafrcbiQWGPI_8fc833v108e9y6zofjwwS05wzgXJOIwV7qvQuBK_NaS-C8lC2jGXLQ9nyWHaM3PURq7U-4YIgwagg_2BVesQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Molavipour, Sina</creator><creator>Bassi, German</creator><creator>Skoglund, Mikael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0002-7926-5081</orcidid><orcidid>https://orcid.org/0000-0002-6247-1217</orcidid><orcidid>https://orcid.org/0000-0002-8974-6591</orcidid></search><sort><creationdate>2021</creationdate><title>Neural Estimators for Conditional Mutual Information Using Nearest Neighbors Sampling</title><author>Molavipour, Sina ; Bassi, German ; Skoglund, Mikael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-af00c711b284ac37221f553cbf345b28664f579d059478937bd145d32bf159ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Channel estimation</topic><topic>Codes</topic><topic>Conditional mutual information</topic><topic>Confidence</topic><topic>Density functional theory</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Mutual information</topic><topic>Nearest neighbor methods</topic><topic>nearest neighbors</topic><topic>Neural networks</topic><topic>Random variables</topic><topic>Resampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molavipour, Sina</creatorcontrib><creatorcontrib>Bassi, German</creatorcontrib><creatorcontrib>Skoglund, Mikael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Molavipour, Sina</au><au>Bassi, German</au><au>Skoglund, Mikael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Estimators for Conditional Mutual Information Using Nearest Neighbors Sampling</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2021</date><risdate>2021</risdate><volume>69</volume><spage>766</spage><epage>780</epage><pages>766-780</pages><issn>1053-587X</issn><issn>1941-0476</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The estimation of mutual information (MI) or conditional mutual information (CMI) from a set of samples is a longstanding problem. A recent line of work in this area has leveraged the approximation power of artificial neural networks and has shown improvements over conventional methods. One important challenge in this new approach is the need to obtain, given the original dataset, a different set where the samples are distributed according to a specific product density function. This is particularly challenging when estimating CMI. In this paper, we introduce a new technique, based on k nearest neighbors (k-NN), to perform the resampling and derive high-confidence concentration bounds for the sample average. Then the technique is employed to train a neural network classifier and the CMI is estimated accordingly. We propose three estimators using this technique and prove their consistency, make a comparison between them and similar approaches in the literature, and experimentally show improvements in estimating the CMI in terms of accuracy and variance of the estimators.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2021.3050564</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7926-5081</orcidid><orcidid>https://orcid.org/0000-0002-6247-1217</orcidid><orcidid>https://orcid.org/0000-0002-8974-6591</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2021, Vol.69, p.766-780 |
issn | 1053-587X 1941-0476 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_2486591864 |
source | IEEE/IET Electronic Library |
subjects | Artificial neural networks Channel estimation Codes Conditional mutual information Confidence Density functional theory Estimation Estimators Mutual information Nearest neighbor methods nearest neighbors Neural networks Random variables Resampling |
title | Neural Estimators for Conditional Mutual Information Using Nearest Neighbors Sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Estimators%20for%20Conditional%20Mutual%20Information%20Using%20Nearest%20Neighbors%20Sampling&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Molavipour,%20Sina&rft.date=2021&rft.volume=69&rft.spage=766&rft.epage=780&rft.pages=766-780&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2021.3050564&rft_dat=%3Cproquest_RIE%3E2486591864%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486591864&rft_id=info:pmid/&rft_ieee_id=9319549&rfr_iscdi=true |