Neural Estimators for Conditional Mutual Information Using Nearest Neighbors Sampling

The estimation of mutual information (MI) or conditional mutual information (CMI) from a set of samples is a longstanding problem. A recent line of work in this area has leveraged the approximation power of artificial neural networks and has shown improvements over conventional methods. One importan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2021, Vol.69, p.766-780
Hauptverfasser: Molavipour, Sina, Bassi, German, Skoglund, Mikael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 780
container_issue
container_start_page 766
container_title IEEE transactions on signal processing
container_volume 69
creator Molavipour, Sina
Bassi, German
Skoglund, Mikael
description The estimation of mutual information (MI) or conditional mutual information (CMI) from a set of samples is a longstanding problem. A recent line of work in this area has leveraged the approximation power of artificial neural networks and has shown improvements over conventional methods. One important challenge in this new approach is the need to obtain, given the original dataset, a different set where the samples are distributed according to a specific product density function. This is particularly challenging when estimating CMI. In this paper, we introduce a new technique, based on k nearest neighbors (k-NN), to perform the resampling and derive high-confidence concentration bounds for the sample average. Then the technique is employed to train a neural network classifier and the CMI is estimated accordingly. We propose three estimators using this technique and prove their consistency, make a comparison between them and similar approaches in the literature, and experimentally show improvements in estimating the CMI in terms of accuracy and variance of the estimators.
doi_str_mv 10.1109/TSP.2021.3050564
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2486591864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9319549</ieee_id><sourcerecordid>2486591864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-af00c711b284ac37221f553cbf345b28664f579d059478937bd145d32bf159ad3</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKfvgi8Fnzvz3eZxzK_BnMI28S2kbbJlbk1NWsT_3oyOPZ1wz-9ccg8AtwiOEILiYbn4GGGI0YhABhmnZ2CABEUppBk_j2_ISMry7OsSXIWwhRBRKvgArOa682qXPIXW7lXrfEiM88nE1ZVtrauj9da1XZRpHY2IxGGyCrZeJ3OtvA5tVLveFIfoQu2bXbSuwYVRu6BvjjoEq-en5eQ1nb2_TCfjWVoSLNpUGQjLDKEC51SVJMMYGcZIWRhCWRxyTg3LRAWZoFkuSFZUiLKK4MIgJlRFhiDt94Zf3XSFbHw8wv9Jp6x8tJ9j6fxafrcbiQWGPI_8fc833v108e9y6zofjwwS05wzgXJOIwV7qvQuBK_NaS-C8lC2jGXLQ9nyWHaM3PURq7U-4YIgwagg_2BVesQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486591864</pqid></control><display><type>article</type><title>Neural Estimators for Conditional Mutual Information Using Nearest Neighbors Sampling</title><source>IEEE/IET Electronic Library</source><creator>Molavipour, Sina ; Bassi, German ; Skoglund, Mikael</creator><creatorcontrib>Molavipour, Sina ; Bassi, German ; Skoglund, Mikael</creatorcontrib><description>The estimation of mutual information (MI) or conditional mutual information (CMI) from a set of samples is a longstanding problem. A recent line of work in this area has leveraged the approximation power of artificial neural networks and has shown improvements over conventional methods. One important challenge in this new approach is the need to obtain, given the original dataset, a different set where the samples are distributed according to a specific product density function. This is particularly challenging when estimating CMI. In this paper, we introduce a new technique, based on k nearest neighbors (k-NN), to perform the resampling and derive high-confidence concentration bounds for the sample average. Then the technique is employed to train a neural network classifier and the CMI is estimated accordingly. We propose three estimators using this technique and prove their consistency, make a comparison between them and similar approaches in the literature, and experimentally show improvements in estimating the CMI in terms of accuracy and variance of the estimators.</description><identifier>ISSN: 1053-587X</identifier><identifier>ISSN: 1941-0476</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2021.3050564</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Channel estimation ; Codes ; Conditional mutual information ; Confidence ; Density functional theory ; Estimation ; Estimators ; Mutual information ; Nearest neighbor methods ; nearest neighbors ; Neural networks ; Random variables ; Resampling</subject><ispartof>IEEE transactions on signal processing, 2021, Vol.69, p.766-780</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-af00c711b284ac37221f553cbf345b28664f579d059478937bd145d32bf159ad3</citedby><cites>FETCH-LOGICAL-c329t-af00c711b284ac37221f553cbf345b28664f579d059478937bd145d32bf159ad3</cites><orcidid>0000-0002-7926-5081 ; 0000-0002-6247-1217 ; 0000-0002-8974-6591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9319549$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9319549$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292068$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Molavipour, Sina</creatorcontrib><creatorcontrib>Bassi, German</creatorcontrib><creatorcontrib>Skoglund, Mikael</creatorcontrib><title>Neural Estimators for Conditional Mutual Information Using Nearest Neighbors Sampling</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The estimation of mutual information (MI) or conditional mutual information (CMI) from a set of samples is a longstanding problem. A recent line of work in this area has leveraged the approximation power of artificial neural networks and has shown improvements over conventional methods. One important challenge in this new approach is the need to obtain, given the original dataset, a different set where the samples are distributed according to a specific product density function. This is particularly challenging when estimating CMI. In this paper, we introduce a new technique, based on k nearest neighbors (k-NN), to perform the resampling and derive high-confidence concentration bounds for the sample average. Then the technique is employed to train a neural network classifier and the CMI is estimated accordingly. We propose three estimators using this technique and prove their consistency, make a comparison between them and similar approaches in the literature, and experimentally show improvements in estimating the CMI in terms of accuracy and variance of the estimators.</description><subject>Artificial neural networks</subject><subject>Channel estimation</subject><subject>Codes</subject><subject>Conditional mutual information</subject><subject>Confidence</subject><subject>Density functional theory</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Mutual information</subject><subject>Nearest neighbor methods</subject><subject>nearest neighbors</subject><subject>Neural networks</subject><subject>Random variables</subject><subject>Resampling</subject><issn>1053-587X</issn><issn>1941-0476</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOKfvgi8Fnzvz3eZxzK_BnMI28S2kbbJlbk1NWsT_3oyOPZ1wz-9ccg8AtwiOEILiYbn4GGGI0YhABhmnZ2CABEUppBk_j2_ISMry7OsSXIWwhRBRKvgArOa682qXPIXW7lXrfEiM88nE1ZVtrauj9da1XZRpHY2IxGGyCrZeJ3OtvA5tVLveFIfoQu2bXbSuwYVRu6BvjjoEq-en5eQ1nb2_TCfjWVoSLNpUGQjLDKEC51SVJMMYGcZIWRhCWRxyTg3LRAWZoFkuSFZUiLKK4MIgJlRFhiDt94Zf3XSFbHw8wv9Jp6x8tJ9j6fxafrcbiQWGPI_8fc833v108e9y6zofjwwS05wzgXJOIwV7qvQuBK_NaS-C8lC2jGXLQ9nyWHaM3PURq7U-4YIgwagg_2BVesQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Molavipour, Sina</creator><creator>Bassi, German</creator><creator>Skoglund, Mikael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0002-7926-5081</orcidid><orcidid>https://orcid.org/0000-0002-6247-1217</orcidid><orcidid>https://orcid.org/0000-0002-8974-6591</orcidid></search><sort><creationdate>2021</creationdate><title>Neural Estimators for Conditional Mutual Information Using Nearest Neighbors Sampling</title><author>Molavipour, Sina ; Bassi, German ; Skoglund, Mikael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-af00c711b284ac37221f553cbf345b28664f579d059478937bd145d32bf159ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Channel estimation</topic><topic>Codes</topic><topic>Conditional mutual information</topic><topic>Confidence</topic><topic>Density functional theory</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Mutual information</topic><topic>Nearest neighbor methods</topic><topic>nearest neighbors</topic><topic>Neural networks</topic><topic>Random variables</topic><topic>Resampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molavipour, Sina</creatorcontrib><creatorcontrib>Bassi, German</creatorcontrib><creatorcontrib>Skoglund, Mikael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Molavipour, Sina</au><au>Bassi, German</au><au>Skoglund, Mikael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Estimators for Conditional Mutual Information Using Nearest Neighbors Sampling</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2021</date><risdate>2021</risdate><volume>69</volume><spage>766</spage><epage>780</epage><pages>766-780</pages><issn>1053-587X</issn><issn>1941-0476</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The estimation of mutual information (MI) or conditional mutual information (CMI) from a set of samples is a longstanding problem. A recent line of work in this area has leveraged the approximation power of artificial neural networks and has shown improvements over conventional methods. One important challenge in this new approach is the need to obtain, given the original dataset, a different set where the samples are distributed according to a specific product density function. This is particularly challenging when estimating CMI. In this paper, we introduce a new technique, based on k nearest neighbors (k-NN), to perform the resampling and derive high-confidence concentration bounds for the sample average. Then the technique is employed to train a neural network classifier and the CMI is estimated accordingly. We propose three estimators using this technique and prove their consistency, make a comparison between them and similar approaches in the literature, and experimentally show improvements in estimating the CMI in terms of accuracy and variance of the estimators.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2021.3050564</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7926-5081</orcidid><orcidid>https://orcid.org/0000-0002-6247-1217</orcidid><orcidid>https://orcid.org/0000-0002-8974-6591</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2021, Vol.69, p.766-780
issn 1053-587X
1941-0476
1941-0476
language eng
recordid cdi_proquest_journals_2486591864
source IEEE/IET Electronic Library
subjects Artificial neural networks
Channel estimation
Codes
Conditional mutual information
Confidence
Density functional theory
Estimation
Estimators
Mutual information
Nearest neighbor methods
nearest neighbors
Neural networks
Random variables
Resampling
title Neural Estimators for Conditional Mutual Information Using Nearest Neighbors Sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Estimators%20for%20Conditional%20Mutual%20Information%20Using%20Nearest%20Neighbors%20Sampling&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Molavipour,%20Sina&rft.date=2021&rft.volume=69&rft.spage=766&rft.epage=780&rft.pages=766-780&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2021.3050564&rft_dat=%3Cproquest_RIE%3E2486591864%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486591864&rft_id=info:pmid/&rft_ieee_id=9319549&rfr_iscdi=true