Evolution of the Alfvén Mach number associated with a coronal mass ejection shock

The Sun regularly produces large-scale eruptive events, such as coronal mass ejections (CMEs) that can drive shock waves through the solar corona. Such shocks can result in electron acceleration and subsequent radio emission in the form of a type II radio burst. However, the early-phase evolution of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2020-01, Vol.633, p.A56
Hauptverfasser: Maguire, Ciara A., Carley, Eoin P., McCauley, Joseph, Gallagher, Peter T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A56
container_title Astronomy and astrophysics (Berlin)
container_volume 633
creator Maguire, Ciara A.
Carley, Eoin P.
McCauley, Joseph
Gallagher, Peter T.
description The Sun regularly produces large-scale eruptive events, such as coronal mass ejections (CMEs) that can drive shock waves through the solar corona. Such shocks can result in electron acceleration and subsequent radio emission in the form of a type II radio burst. However, the early-phase evolution of shock properties and its relationship to type II burst evolution is still subject to investigation. Here we study the evolution of a CME-driven shock by comparing three commonly used methods of calculating the Alfvén Mach number ( M A ), namely: shock geometry, a comparison of CME speed to a model of the coronal Alfvén speed, and the type II band-splitting method. We applied the three methods to the 2017 September 2 event, focusing on the shock wave observed in extreme ultraviolet by the Solar Ultraviolet Imager on board GOES-16, in white-light by the Large Angle and Spectrometric Coronagraph on board SOHO, and the type II radio burst observed by the Irish Low Frequency Array. We show that the three different methods of estimating shock M A yield consistent results and provide a means of relating shock property evolution to the type II emission duration. The type II radio emission emerged from near the nose of the CME when M A was in the range 1.4–2.4 at a heliocentric distance of ∼1.6 R ⊙ . The emission ceased when the CME nose reached ∼2.4 R ⊙ , despite an increasing Alfvén Mach number (up to 4). We suggest the radio emission cessation is due to the lack of quasi-perpendicular geometry at this altitude, which inhibits efficient electron acceleration and subsequent radio emission.
doi_str_mv 10.1051/0004-6361/201936449
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486569120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486569120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-7e1dc5879f97a58e595cdd154ac648f9eabba178fd3ea7339be508b0e4cdc6503</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsFafwM2A69j5z8yylPoDFUF0PUwmNyQ1zdSZpOIj-Ry-mI2Vri6H-3E4fAhdU3JLiaQzQojIFFd0xgg1XAlhTtCECs4ykgt1iiZH4hxdpLTeR0Y1n6CX5S60Q9-EDocK9zXgeVvtfr47_OR8jbthU0DELqXgG9dDiT-bvsYO-xBD51q82b8wrMH_VaQ6-PdLdFa5NsHV_52it7vl6-IhWz3fPy7mq8xzxvosB1p6qXNTmdxJDdJIX5ZUCueV0JUBVxSO5roqObicc1OAJLogIHzplSR8im4OvdsYPgZIvV2HIe5HJcuEVlIZykaKHygfQ0oRKruNzcbFL0uJHeXZUY0d1dijPP4LqvRioQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486569120</pqid></control><display><type>article</type><title>Evolution of the Alfvén Mach number associated with a coronal mass ejection shock</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Maguire, Ciara A. ; Carley, Eoin P. ; McCauley, Joseph ; Gallagher, Peter T.</creator><creatorcontrib>Maguire, Ciara A. ; Carley, Eoin P. ; McCauley, Joseph ; Gallagher, Peter T.</creatorcontrib><description>The Sun regularly produces large-scale eruptive events, such as coronal mass ejections (CMEs) that can drive shock waves through the solar corona. Such shocks can result in electron acceleration and subsequent radio emission in the form of a type II radio burst. However, the early-phase evolution of shock properties and its relationship to type II burst evolution is still subject to investigation. Here we study the evolution of a CME-driven shock by comparing three commonly used methods of calculating the Alfvén Mach number ( M A ), namely: shock geometry, a comparison of CME speed to a model of the coronal Alfvén speed, and the type II band-splitting method. We applied the three methods to the 2017 September 2 event, focusing on the shock wave observed in extreme ultraviolet by the Solar Ultraviolet Imager on board GOES-16, in white-light by the Large Angle and Spectrometric Coronagraph on board SOHO, and the type II radio burst observed by the Irish Low Frequency Array. We show that the three different methods of estimating shock M A yield consistent results and provide a means of relating shock property evolution to the type II emission duration. The type II radio emission emerged from near the nose of the CME when M A was in the range 1.4–2.4 at a heliocentric distance of ∼1.6 R ⊙ . The emission ceased when the CME nose reached ∼2.4 R ⊙ , despite an increasing Alfvén Mach number (up to 4). We suggest the radio emission cessation is due to the lack of quasi-perpendicular geometry at this altitude, which inhibits efficient electron acceleration and subsequent radio emission.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201936449</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Coronagraphs ; Coronal mass ejection ; Electron acceleration ; Evolution ; Mach number ; Nose ; Radio emission ; Shock waves ; Solar corona ; Solar radio bursts ; Spectrometry ; White light</subject><ispartof>Astronomy and astrophysics (Berlin), 2020-01, Vol.633, p.A56</ispartof><rights>Copyright EDP Sciences Jan 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-7e1dc5879f97a58e595cdd154ac648f9eabba178fd3ea7339be508b0e4cdc6503</citedby><cites>FETCH-LOGICAL-c322t-7e1dc5879f97a58e595cdd154ac648f9eabba178fd3ea7339be508b0e4cdc6503</cites><orcidid>0000-0001-9745-0400 ; 0000-0001-9564-6151 ; 0000-0002-6106-5292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3713,27903,27904</link.rule.ids></links><search><creatorcontrib>Maguire, Ciara A.</creatorcontrib><creatorcontrib>Carley, Eoin P.</creatorcontrib><creatorcontrib>McCauley, Joseph</creatorcontrib><creatorcontrib>Gallagher, Peter T.</creatorcontrib><title>Evolution of the Alfvén Mach number associated with a coronal mass ejection shock</title><title>Astronomy and astrophysics (Berlin)</title><description>The Sun regularly produces large-scale eruptive events, such as coronal mass ejections (CMEs) that can drive shock waves through the solar corona. Such shocks can result in electron acceleration and subsequent radio emission in the form of a type II radio burst. However, the early-phase evolution of shock properties and its relationship to type II burst evolution is still subject to investigation. Here we study the evolution of a CME-driven shock by comparing three commonly used methods of calculating the Alfvén Mach number ( M A ), namely: shock geometry, a comparison of CME speed to a model of the coronal Alfvén speed, and the type II band-splitting method. We applied the three methods to the 2017 September 2 event, focusing on the shock wave observed in extreme ultraviolet by the Solar Ultraviolet Imager on board GOES-16, in white-light by the Large Angle and Spectrometric Coronagraph on board SOHO, and the type II radio burst observed by the Irish Low Frequency Array. We show that the three different methods of estimating shock M A yield consistent results and provide a means of relating shock property evolution to the type II emission duration. The type II radio emission emerged from near the nose of the CME when M A was in the range 1.4–2.4 at a heliocentric distance of ∼1.6 R ⊙ . The emission ceased when the CME nose reached ∼2.4 R ⊙ , despite an increasing Alfvén Mach number (up to 4). We suggest the radio emission cessation is due to the lack of quasi-perpendicular geometry at this altitude, which inhibits efficient electron acceleration and subsequent radio emission.</description><subject>Coronagraphs</subject><subject>Coronal mass ejection</subject><subject>Electron acceleration</subject><subject>Evolution</subject><subject>Mach number</subject><subject>Nose</subject><subject>Radio emission</subject><subject>Shock waves</subject><subject>Solar corona</subject><subject>Solar radio bursts</subject><subject>Spectrometry</subject><subject>White light</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AUhQdRsFafwM2A69j5z8yylPoDFUF0PUwmNyQ1zdSZpOIj-Ry-mI2Vri6H-3E4fAhdU3JLiaQzQojIFFd0xgg1XAlhTtCECs4ykgt1iiZH4hxdpLTeR0Y1n6CX5S60Q9-EDocK9zXgeVvtfr47_OR8jbthU0DELqXgG9dDiT-bvsYO-xBD51q82b8wrMH_VaQ6-PdLdFa5NsHV_52it7vl6-IhWz3fPy7mq8xzxvosB1p6qXNTmdxJDdJIX5ZUCueV0JUBVxSO5roqObicc1OAJLogIHzplSR8im4OvdsYPgZIvV2HIe5HJcuEVlIZykaKHygfQ0oRKruNzcbFL0uJHeXZUY0d1dijPP4LqvRioQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Maguire, Ciara A.</creator><creator>Carley, Eoin P.</creator><creator>McCauley, Joseph</creator><creator>Gallagher, Peter T.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9745-0400</orcidid><orcidid>https://orcid.org/0000-0001-9564-6151</orcidid><orcidid>https://orcid.org/0000-0002-6106-5292</orcidid></search><sort><creationdate>20200101</creationdate><title>Evolution of the Alfvén Mach number associated with a coronal mass ejection shock</title><author>Maguire, Ciara A. ; Carley, Eoin P. ; McCauley, Joseph ; Gallagher, Peter T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-7e1dc5879f97a58e595cdd154ac648f9eabba178fd3ea7339be508b0e4cdc6503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coronagraphs</topic><topic>Coronal mass ejection</topic><topic>Electron acceleration</topic><topic>Evolution</topic><topic>Mach number</topic><topic>Nose</topic><topic>Radio emission</topic><topic>Shock waves</topic><topic>Solar corona</topic><topic>Solar radio bursts</topic><topic>Spectrometry</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maguire, Ciara A.</creatorcontrib><creatorcontrib>Carley, Eoin P.</creatorcontrib><creatorcontrib>McCauley, Joseph</creatorcontrib><creatorcontrib>Gallagher, Peter T.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maguire, Ciara A.</au><au>Carley, Eoin P.</au><au>McCauley, Joseph</au><au>Gallagher, Peter T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of the Alfvén Mach number associated with a coronal mass ejection shock</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>633</volume><spage>A56</spage><pages>A56-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>The Sun regularly produces large-scale eruptive events, such as coronal mass ejections (CMEs) that can drive shock waves through the solar corona. Such shocks can result in electron acceleration and subsequent radio emission in the form of a type II radio burst. However, the early-phase evolution of shock properties and its relationship to type II burst evolution is still subject to investigation. Here we study the evolution of a CME-driven shock by comparing three commonly used methods of calculating the Alfvén Mach number ( M A ), namely: shock geometry, a comparison of CME speed to a model of the coronal Alfvén speed, and the type II band-splitting method. We applied the three methods to the 2017 September 2 event, focusing on the shock wave observed in extreme ultraviolet by the Solar Ultraviolet Imager on board GOES-16, in white-light by the Large Angle and Spectrometric Coronagraph on board SOHO, and the type II radio burst observed by the Irish Low Frequency Array. We show that the three different methods of estimating shock M A yield consistent results and provide a means of relating shock property evolution to the type II emission duration. The type II radio emission emerged from near the nose of the CME when M A was in the range 1.4–2.4 at a heliocentric distance of ∼1.6 R ⊙ . The emission ceased when the CME nose reached ∼2.4 R ⊙ , despite an increasing Alfvén Mach number (up to 4). We suggest the radio emission cessation is due to the lack of quasi-perpendicular geometry at this altitude, which inhibits efficient electron acceleration and subsequent radio emission.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201936449</doi><orcidid>https://orcid.org/0000-0001-9745-0400</orcidid><orcidid>https://orcid.org/0000-0001-9564-6151</orcidid><orcidid>https://orcid.org/0000-0002-6106-5292</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2020-01, Vol.633, p.A56
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_journals_2486569120
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Coronagraphs
Coronal mass ejection
Electron acceleration
Evolution
Mach number
Nose
Radio emission
Shock waves
Solar corona
Solar radio bursts
Spectrometry
White light
title Evolution of the Alfvén Mach number associated with a coronal mass ejection shock
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20the%20Alfv%C3%A9n%20Mach%20number%20associated%20with%20a%20coronal%20mass%20ejection%20shock&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Maguire,%20Ciara%20A.&rft.date=2020-01-01&rft.volume=633&rft.spage=A56&rft.pages=A56-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201936449&rft_dat=%3Cproquest_cross%3E2486569120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486569120&rft_id=info:pmid/&rfr_iscdi=true