Evolution of the Alfvén Mach number associated with a coronal mass ejection shock
The Sun regularly produces large-scale eruptive events, such as coronal mass ejections (CMEs) that can drive shock waves through the solar corona. Such shocks can result in electron acceleration and subsequent radio emission in the form of a type II radio burst. However, the early-phase evolution of...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2020-01, Vol.633, p.A56 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | A56 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 633 |
creator | Maguire, Ciara A. Carley, Eoin P. McCauley, Joseph Gallagher, Peter T. |
description | The Sun regularly produces large-scale eruptive events, such as coronal mass ejections (CMEs) that can drive shock waves through the solar corona. Such shocks can result in electron acceleration and subsequent radio emission in the form of a type II radio burst. However, the early-phase evolution of shock properties and its relationship to type II burst evolution is still subject to investigation. Here we study the evolution of a CME-driven shock by comparing three commonly used methods of calculating the Alfvén Mach number (
M
A
), namely: shock geometry, a comparison of CME speed to a model of the coronal Alfvén speed, and the type II band-splitting method. We applied the three methods to the 2017 September 2 event, focusing on the shock wave observed in extreme ultraviolet by the Solar Ultraviolet Imager on board GOES-16, in white-light by the Large Angle and Spectrometric Coronagraph on board SOHO, and the type II radio burst observed by the Irish Low Frequency Array. We show that the three different methods of estimating shock
M
A
yield consistent results and provide a means of relating shock property evolution to the type II emission duration. The type II radio emission emerged from near the nose of the CME when
M
A
was in the range 1.4–2.4 at a heliocentric distance of ∼1.6
R
⊙
. The emission ceased when the CME nose reached ∼2.4
R
⊙
, despite an increasing Alfvén Mach number (up to 4). We suggest the radio emission cessation is due to the lack of quasi-perpendicular geometry at this altitude, which inhibits efficient electron acceleration and subsequent radio emission. |
doi_str_mv | 10.1051/0004-6361/201936449 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486569120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486569120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-7e1dc5879f97a58e595cdd154ac648f9eabba178fd3ea7339be508b0e4cdc6503</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsFafwM2A69j5z8yylPoDFUF0PUwmNyQ1zdSZpOIj-Ry-mI2Vri6H-3E4fAhdU3JLiaQzQojIFFd0xgg1XAlhTtCECs4ykgt1iiZH4hxdpLTeR0Y1n6CX5S60Q9-EDocK9zXgeVvtfr47_OR8jbthU0DELqXgG9dDiT-bvsYO-xBD51q82b8wrMH_VaQ6-PdLdFa5NsHV_52it7vl6-IhWz3fPy7mq8xzxvosB1p6qXNTmdxJDdJIX5ZUCueV0JUBVxSO5roqObicc1OAJLogIHzplSR8im4OvdsYPgZIvV2HIe5HJcuEVlIZykaKHygfQ0oRKruNzcbFL0uJHeXZUY0d1dijPP4LqvRioQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486569120</pqid></control><display><type>article</type><title>Evolution of the Alfvén Mach number associated with a coronal mass ejection shock</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Maguire, Ciara A. ; Carley, Eoin P. ; McCauley, Joseph ; Gallagher, Peter T.</creator><creatorcontrib>Maguire, Ciara A. ; Carley, Eoin P. ; McCauley, Joseph ; Gallagher, Peter T.</creatorcontrib><description>The Sun regularly produces large-scale eruptive events, such as coronal mass ejections (CMEs) that can drive shock waves through the solar corona. Such shocks can result in electron acceleration and subsequent radio emission in the form of a type II radio burst. However, the early-phase evolution of shock properties and its relationship to type II burst evolution is still subject to investigation. Here we study the evolution of a CME-driven shock by comparing three commonly used methods of calculating the Alfvén Mach number (
M
A
), namely: shock geometry, a comparison of CME speed to a model of the coronal Alfvén speed, and the type II band-splitting method. We applied the three methods to the 2017 September 2 event, focusing on the shock wave observed in extreme ultraviolet by the Solar Ultraviolet Imager on board GOES-16, in white-light by the Large Angle and Spectrometric Coronagraph on board SOHO, and the type II radio burst observed by the Irish Low Frequency Array. We show that the three different methods of estimating shock
M
A
yield consistent results and provide a means of relating shock property evolution to the type II emission duration. The type II radio emission emerged from near the nose of the CME when
M
A
was in the range 1.4–2.4 at a heliocentric distance of ∼1.6
R
⊙
. The emission ceased when the CME nose reached ∼2.4
R
⊙
, despite an increasing Alfvén Mach number (up to 4). We suggest the radio emission cessation is due to the lack of quasi-perpendicular geometry at this altitude, which inhibits efficient electron acceleration and subsequent radio emission.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201936449</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Coronagraphs ; Coronal mass ejection ; Electron acceleration ; Evolution ; Mach number ; Nose ; Radio emission ; Shock waves ; Solar corona ; Solar radio bursts ; Spectrometry ; White light</subject><ispartof>Astronomy and astrophysics (Berlin), 2020-01, Vol.633, p.A56</ispartof><rights>Copyright EDP Sciences Jan 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-7e1dc5879f97a58e595cdd154ac648f9eabba178fd3ea7339be508b0e4cdc6503</citedby><cites>FETCH-LOGICAL-c322t-7e1dc5879f97a58e595cdd154ac648f9eabba178fd3ea7339be508b0e4cdc6503</cites><orcidid>0000-0001-9745-0400 ; 0000-0001-9564-6151 ; 0000-0002-6106-5292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3713,27903,27904</link.rule.ids></links><search><creatorcontrib>Maguire, Ciara A.</creatorcontrib><creatorcontrib>Carley, Eoin P.</creatorcontrib><creatorcontrib>McCauley, Joseph</creatorcontrib><creatorcontrib>Gallagher, Peter T.</creatorcontrib><title>Evolution of the Alfvén Mach number associated with a coronal mass ejection shock</title><title>Astronomy and astrophysics (Berlin)</title><description>The Sun regularly produces large-scale eruptive events, such as coronal mass ejections (CMEs) that can drive shock waves through the solar corona. Such shocks can result in electron acceleration and subsequent radio emission in the form of a type II radio burst. However, the early-phase evolution of shock properties and its relationship to type II burst evolution is still subject to investigation. Here we study the evolution of a CME-driven shock by comparing three commonly used methods of calculating the Alfvén Mach number (
M
A
), namely: shock geometry, a comparison of CME speed to a model of the coronal Alfvén speed, and the type II band-splitting method. We applied the three methods to the 2017 September 2 event, focusing on the shock wave observed in extreme ultraviolet by the Solar Ultraviolet Imager on board GOES-16, in white-light by the Large Angle and Spectrometric Coronagraph on board SOHO, and the type II radio burst observed by the Irish Low Frequency Array. We show that the three different methods of estimating shock
M
A
yield consistent results and provide a means of relating shock property evolution to the type II emission duration. The type II radio emission emerged from near the nose of the CME when
M
A
was in the range 1.4–2.4 at a heliocentric distance of ∼1.6
R
⊙
. The emission ceased when the CME nose reached ∼2.4
R
⊙
, despite an increasing Alfvén Mach number (up to 4). We suggest the radio emission cessation is due to the lack of quasi-perpendicular geometry at this altitude, which inhibits efficient electron acceleration and subsequent radio emission.</description><subject>Coronagraphs</subject><subject>Coronal mass ejection</subject><subject>Electron acceleration</subject><subject>Evolution</subject><subject>Mach number</subject><subject>Nose</subject><subject>Radio emission</subject><subject>Shock waves</subject><subject>Solar corona</subject><subject>Solar radio bursts</subject><subject>Spectrometry</subject><subject>White light</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AUhQdRsFafwM2A69j5z8yylPoDFUF0PUwmNyQ1zdSZpOIj-Ry-mI2Vri6H-3E4fAhdU3JLiaQzQojIFFd0xgg1XAlhTtCECs4ykgt1iiZH4hxdpLTeR0Y1n6CX5S60Q9-EDocK9zXgeVvtfr47_OR8jbthU0DELqXgG9dDiT-bvsYO-xBD51q82b8wrMH_VaQ6-PdLdFa5NsHV_52it7vl6-IhWz3fPy7mq8xzxvosB1p6qXNTmdxJDdJIX5ZUCueV0JUBVxSO5roqObicc1OAJLogIHzplSR8im4OvdsYPgZIvV2HIe5HJcuEVlIZykaKHygfQ0oRKruNzcbFL0uJHeXZUY0d1dijPP4LqvRioQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Maguire, Ciara A.</creator><creator>Carley, Eoin P.</creator><creator>McCauley, Joseph</creator><creator>Gallagher, Peter T.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9745-0400</orcidid><orcidid>https://orcid.org/0000-0001-9564-6151</orcidid><orcidid>https://orcid.org/0000-0002-6106-5292</orcidid></search><sort><creationdate>20200101</creationdate><title>Evolution of the Alfvén Mach number associated with a coronal mass ejection shock</title><author>Maguire, Ciara A. ; Carley, Eoin P. ; McCauley, Joseph ; Gallagher, Peter T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-7e1dc5879f97a58e595cdd154ac648f9eabba178fd3ea7339be508b0e4cdc6503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coronagraphs</topic><topic>Coronal mass ejection</topic><topic>Electron acceleration</topic><topic>Evolution</topic><topic>Mach number</topic><topic>Nose</topic><topic>Radio emission</topic><topic>Shock waves</topic><topic>Solar corona</topic><topic>Solar radio bursts</topic><topic>Spectrometry</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maguire, Ciara A.</creatorcontrib><creatorcontrib>Carley, Eoin P.</creatorcontrib><creatorcontrib>McCauley, Joseph</creatorcontrib><creatorcontrib>Gallagher, Peter T.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maguire, Ciara A.</au><au>Carley, Eoin P.</au><au>McCauley, Joseph</au><au>Gallagher, Peter T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of the Alfvén Mach number associated with a coronal mass ejection shock</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>633</volume><spage>A56</spage><pages>A56-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>The Sun regularly produces large-scale eruptive events, such as coronal mass ejections (CMEs) that can drive shock waves through the solar corona. Such shocks can result in electron acceleration and subsequent radio emission in the form of a type II radio burst. However, the early-phase evolution of shock properties and its relationship to type II burst evolution is still subject to investigation. Here we study the evolution of a CME-driven shock by comparing three commonly used methods of calculating the Alfvén Mach number (
M
A
), namely: shock geometry, a comparison of CME speed to a model of the coronal Alfvén speed, and the type II band-splitting method. We applied the three methods to the 2017 September 2 event, focusing on the shock wave observed in extreme ultraviolet by the Solar Ultraviolet Imager on board GOES-16, in white-light by the Large Angle and Spectrometric Coronagraph on board SOHO, and the type II radio burst observed by the Irish Low Frequency Array. We show that the three different methods of estimating shock
M
A
yield consistent results and provide a means of relating shock property evolution to the type II emission duration. The type II radio emission emerged from near the nose of the CME when
M
A
was in the range 1.4–2.4 at a heliocentric distance of ∼1.6
R
⊙
. The emission ceased when the CME nose reached ∼2.4
R
⊙
, despite an increasing Alfvén Mach number (up to 4). We suggest the radio emission cessation is due to the lack of quasi-perpendicular geometry at this altitude, which inhibits efficient electron acceleration and subsequent radio emission.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201936449</doi><orcidid>https://orcid.org/0000-0001-9745-0400</orcidid><orcidid>https://orcid.org/0000-0001-9564-6151</orcidid><orcidid>https://orcid.org/0000-0002-6106-5292</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2020-01, Vol.633, p.A56 |
issn | 0004-6361 1432-0746 |
language | eng |
recordid | cdi_proquest_journals_2486569120 |
source | Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Coronagraphs Coronal mass ejection Electron acceleration Evolution Mach number Nose Radio emission Shock waves Solar corona Solar radio bursts Spectrometry White light |
title | Evolution of the Alfvén Mach number associated with a coronal mass ejection shock |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20the%20Alfv%C3%A9n%20Mach%20number%20associated%20with%20a%20coronal%20mass%20ejection%20shock&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Maguire,%20Ciara%20A.&rft.date=2020-01-01&rft.volume=633&rft.spage=A56&rft.pages=A56-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201936449&rft_dat=%3Cproquest_cross%3E2486569120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486569120&rft_id=info:pmid/&rfr_iscdi=true |