A fuzzy logic‐based meningioma tumor detection in magnetic resonance brain images using CANFIS and U‐Net CNN classification
This article develops a methodology for meningioma brain tumor detection process using fuzzy logic based enhancement and co‐active adaptive neuro fuzzy inference system and U‐Net convolutional neural network classification methods. The proposed meningioma tumor detection process consists of the foll...
Gespeichert in:
Veröffentlicht in: | International journal of imaging systems and technology 2021-03, Vol.31 (1), p.379-390 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 390 |
---|---|
container_issue | 1 |
container_start_page | 379 |
container_title | International journal of imaging systems and technology |
container_volume | 31 |
creator | Ragupathy, Balakumaresan Karunakaran, Manivannan |
description | This article develops a methodology for meningioma brain tumor detection process using fuzzy logic based enhancement and co‐active adaptive neuro fuzzy inference system and U‐Net convolutional neural network classification methods. The proposed meningioma tumor detection process consists of the following stages as, enhancement, feature extraction, and classifications. The enhancement of the source brain image is done using fuzzy logic and then dual tree‐complex wavelet transform is applied to this enhanced image at different levels of scale. The features are computed from the decomposed sub band images and these features are further classified using CANFIS classification method which identifies the meningioma brain image from nonmeningioma brain image. The performance of the proposed meningioma brain tumor detection and segmentation system is analyzed in terms of sensitivity, specificity, segmentation accuracy, and Dice coefficient index with detection rate. |
doi_str_mv | 10.1002/ima.22464 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486560183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486560183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2124-95127d445a2b1586e577ac23c20786f4bdedfb8d900a333eac65780733f69ebe3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIaztxfpZRxE-lEhbQdeQ4k8hV4hQ7EWo3cATOyElwCVs2MxrNN-9pHkLXlCwoIWypOrFgLAiDEzSjJIm9YzlFMxIniZcEPDpHF9ZuCaGUEz5DHymux8Nhj9u-UfL786sUFircgVa6UX0n8DB2vcEVDCAH1WusNO5Eo2FQEhuwvRZaAi6NcAvn3oDFo3XHOEvz-9ULFrrCGyecw4CzPMeyFdaqWklxlLtEZ7VoLVz99Tna3N-9Zo_e-vlhlaVrTzLKAi_hlEVVEHDBSsrjEHgUCcl8yUgUh3VQVlDVZVwlhAjf90HIkEcxiXy_DhMowZ-jm0l3Z_q3EexQbPvRaGdZsCAOeUho7DvqdqKk6a01UBc7434y-4KS4phv4abiN1_HLif2XbWw_x8sVk_pdPEDmvZ-Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486560183</pqid></control><display><type>article</type><title>A fuzzy logic‐based meningioma tumor detection in magnetic resonance brain images using CANFIS and U‐Net CNN classification</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ragupathy, Balakumaresan ; Karunakaran, Manivannan</creator><creatorcontrib>Ragupathy, Balakumaresan ; Karunakaran, Manivannan</creatorcontrib><description>This article develops a methodology for meningioma brain tumor detection process using fuzzy logic based enhancement and co‐active adaptive neuro fuzzy inference system and U‐Net convolutional neural network classification methods. The proposed meningioma tumor detection process consists of the following stages as, enhancement, feature extraction, and classifications. The enhancement of the source brain image is done using fuzzy logic and then dual tree‐complex wavelet transform is applied to this enhanced image at different levels of scale. The features are computed from the decomposed sub band images and these features are further classified using CANFIS classification method which identifies the meningioma brain image from nonmeningioma brain image. The performance of the proposed meningioma brain tumor detection and segmentation system is analyzed in terms of sensitivity, specificity, segmentation accuracy, and Dice coefficient index with detection rate.</description><identifier>ISSN: 0899-9457</identifier><identifier>EISSN: 1098-1098</identifier><identifier>DOI: 10.1002/ima.22464</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adaptive systems ; Artificial neural networks ; Brain ; Brain cancer ; classifications ; Feature extraction ; features ; Fuzzy logic ; Image classification ; Image enhancement ; Image segmentation ; Magnetic resonance ; meningioma ; tumor ; Tumors ; Wavelet transforms</subject><ispartof>International journal of imaging systems and technology, 2021-03, Vol.31 (1), p.379-390</ispartof><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2124-95127d445a2b1586e577ac23c20786f4bdedfb8d900a333eac65780733f69ebe3</citedby><cites>FETCH-LOGICAL-c2124-95127d445a2b1586e577ac23c20786f4bdedfb8d900a333eac65780733f69ebe3</cites><orcidid>0000-0001-6152-472X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fima.22464$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fima.22464$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ragupathy, Balakumaresan</creatorcontrib><creatorcontrib>Karunakaran, Manivannan</creatorcontrib><title>A fuzzy logic‐based meningioma tumor detection in magnetic resonance brain images using CANFIS and U‐Net CNN classification</title><title>International journal of imaging systems and technology</title><description>This article develops a methodology for meningioma brain tumor detection process using fuzzy logic based enhancement and co‐active adaptive neuro fuzzy inference system and U‐Net convolutional neural network classification methods. The proposed meningioma tumor detection process consists of the following stages as, enhancement, feature extraction, and classifications. The enhancement of the source brain image is done using fuzzy logic and then dual tree‐complex wavelet transform is applied to this enhanced image at different levels of scale. The features are computed from the decomposed sub band images and these features are further classified using CANFIS classification method which identifies the meningioma brain image from nonmeningioma brain image. The performance of the proposed meningioma brain tumor detection and segmentation system is analyzed in terms of sensitivity, specificity, segmentation accuracy, and Dice coefficient index with detection rate.</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>classifications</subject><subject>Feature extraction</subject><subject>features</subject><subject>Fuzzy logic</subject><subject>Image classification</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Magnetic resonance</subject><subject>meningioma</subject><subject>tumor</subject><subject>Tumors</subject><subject>Wavelet transforms</subject><issn>0899-9457</issn><issn>1098-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIaztxfpZRxE-lEhbQdeQ4k8hV4hQ7EWo3cATOyElwCVs2MxrNN-9pHkLXlCwoIWypOrFgLAiDEzSjJIm9YzlFMxIniZcEPDpHF9ZuCaGUEz5DHymux8Nhj9u-UfL786sUFircgVa6UX0n8DB2vcEVDCAH1WusNO5Eo2FQEhuwvRZaAi6NcAvn3oDFo3XHOEvz-9ULFrrCGyecw4CzPMeyFdaqWklxlLtEZ7VoLVz99Tna3N-9Zo_e-vlhlaVrTzLKAi_hlEVVEHDBSsrjEHgUCcl8yUgUh3VQVlDVZVwlhAjf90HIkEcxiXy_DhMowZ-jm0l3Z_q3EexQbPvRaGdZsCAOeUho7DvqdqKk6a01UBc7434y-4KS4phv4abiN1_HLif2XbWw_x8sVk_pdPEDmvZ-Zw</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Ragupathy, Balakumaresan</creator><creator>Karunakaran, Manivannan</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6152-472X</orcidid></search><sort><creationdate>202103</creationdate><title>A fuzzy logic‐based meningioma tumor detection in magnetic resonance brain images using CANFIS and U‐Net CNN classification</title><author>Ragupathy, Balakumaresan ; Karunakaran, Manivannan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2124-95127d445a2b1586e577ac23c20786f4bdedfb8d900a333eac65780733f69ebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>classifications</topic><topic>Feature extraction</topic><topic>features</topic><topic>Fuzzy logic</topic><topic>Image classification</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Magnetic resonance</topic><topic>meningioma</topic><topic>tumor</topic><topic>Tumors</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ragupathy, Balakumaresan</creatorcontrib><creatorcontrib>Karunakaran, Manivannan</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of imaging systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ragupathy, Balakumaresan</au><au>Karunakaran, Manivannan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fuzzy logic‐based meningioma tumor detection in magnetic resonance brain images using CANFIS and U‐Net CNN classification</atitle><jtitle>International journal of imaging systems and technology</jtitle><date>2021-03</date><risdate>2021</risdate><volume>31</volume><issue>1</issue><spage>379</spage><epage>390</epage><pages>379-390</pages><issn>0899-9457</issn><eissn>1098-1098</eissn><abstract>This article develops a methodology for meningioma brain tumor detection process using fuzzy logic based enhancement and co‐active adaptive neuro fuzzy inference system and U‐Net convolutional neural network classification methods. The proposed meningioma tumor detection process consists of the following stages as, enhancement, feature extraction, and classifications. The enhancement of the source brain image is done using fuzzy logic and then dual tree‐complex wavelet transform is applied to this enhanced image at different levels of scale. The features are computed from the decomposed sub band images and these features are further classified using CANFIS classification method which identifies the meningioma brain image from nonmeningioma brain image. The performance of the proposed meningioma brain tumor detection and segmentation system is analyzed in terms of sensitivity, specificity, segmentation accuracy, and Dice coefficient index with detection rate.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/ima.22464</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6152-472X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-9457 |
ispartof | International journal of imaging systems and technology, 2021-03, Vol.31 (1), p.379-390 |
issn | 0899-9457 1098-1098 |
language | eng |
recordid | cdi_proquest_journals_2486560183 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adaptive systems Artificial neural networks Brain Brain cancer classifications Feature extraction features Fuzzy logic Image classification Image enhancement Image segmentation Magnetic resonance meningioma tumor Tumors Wavelet transforms |
title | A fuzzy logic‐based meningioma tumor detection in magnetic resonance brain images using CANFIS and U‐Net CNN classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fuzzy%20logic%E2%80%90based%20meningioma%20tumor%20detection%20in%20magnetic%20resonance%20brain%20images%20using%20CANFIS%20and%20U%E2%80%90Net%20CNN%20classification&rft.jtitle=International%20journal%20of%20imaging%20systems%20and%20technology&rft.au=Ragupathy,%20Balakumaresan&rft.date=2021-03&rft.volume=31&rft.issue=1&rft.spage=379&rft.epage=390&rft.pages=379-390&rft.issn=0899-9457&rft.eissn=1098-1098&rft_id=info:doi/10.1002/ima.22464&rft_dat=%3Cproquest_cross%3E2486560183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486560183&rft_id=info:pmid/&rfr_iscdi=true |