A fuzzy logic‐based meningioma tumor detection in magnetic resonance brain images using CANFIS and U‐Net CNN classification

This article develops a methodology for meningioma brain tumor detection process using fuzzy logic based enhancement and co‐active adaptive neuro fuzzy inference system and U‐Net convolutional neural network classification methods. The proposed meningioma tumor detection process consists of the foll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology 2021-03, Vol.31 (1), p.379-390
Hauptverfasser: Ragupathy, Balakumaresan, Karunakaran, Manivannan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 1
container_start_page 379
container_title International journal of imaging systems and technology
container_volume 31
creator Ragupathy, Balakumaresan
Karunakaran, Manivannan
description This article develops a methodology for meningioma brain tumor detection process using fuzzy logic based enhancement and co‐active adaptive neuro fuzzy inference system and U‐Net convolutional neural network classification methods. The proposed meningioma tumor detection process consists of the following stages as, enhancement, feature extraction, and classifications. The enhancement of the source brain image is done using fuzzy logic and then dual tree‐complex wavelet transform is applied to this enhanced image at different levels of scale. The features are computed from the decomposed sub band images and these features are further classified using CANFIS classification method which identifies the meningioma brain image from nonmeningioma brain image. The performance of the proposed meningioma brain tumor detection and segmentation system is analyzed in terms of sensitivity, specificity, segmentation accuracy, and Dice coefficient index with detection rate.
doi_str_mv 10.1002/ima.22464
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486560183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486560183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2124-95127d445a2b1586e577ac23c20786f4bdedfb8d900a333eac65780733f69ebe3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIaztxfpZRxE-lEhbQdeQ4k8hV4hQ7EWo3cATOyElwCVs2MxrNN-9pHkLXlCwoIWypOrFgLAiDEzSjJIm9YzlFMxIniZcEPDpHF9ZuCaGUEz5DHymux8Nhj9u-UfL786sUFircgVa6UX0n8DB2vcEVDCAH1WusNO5Eo2FQEhuwvRZaAi6NcAvn3oDFo3XHOEvz-9ULFrrCGyecw4CzPMeyFdaqWklxlLtEZ7VoLVz99Tna3N-9Zo_e-vlhlaVrTzLKAi_hlEVVEHDBSsrjEHgUCcl8yUgUh3VQVlDVZVwlhAjf90HIkEcxiXy_DhMowZ-jm0l3Z_q3EexQbPvRaGdZsCAOeUho7DvqdqKk6a01UBc7434y-4KS4phv4abiN1_HLif2XbWw_x8sVk_pdPEDmvZ-Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486560183</pqid></control><display><type>article</type><title>A fuzzy logic‐based meningioma tumor detection in magnetic resonance brain images using CANFIS and U‐Net CNN classification</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ragupathy, Balakumaresan ; Karunakaran, Manivannan</creator><creatorcontrib>Ragupathy, Balakumaresan ; Karunakaran, Manivannan</creatorcontrib><description>This article develops a methodology for meningioma brain tumor detection process using fuzzy logic based enhancement and co‐active adaptive neuro fuzzy inference system and U‐Net convolutional neural network classification methods. The proposed meningioma tumor detection process consists of the following stages as, enhancement, feature extraction, and classifications. The enhancement of the source brain image is done using fuzzy logic and then dual tree‐complex wavelet transform is applied to this enhanced image at different levels of scale. The features are computed from the decomposed sub band images and these features are further classified using CANFIS classification method which identifies the meningioma brain image from nonmeningioma brain image. The performance of the proposed meningioma brain tumor detection and segmentation system is analyzed in terms of sensitivity, specificity, segmentation accuracy, and Dice coefficient index with detection rate.</description><identifier>ISSN: 0899-9457</identifier><identifier>EISSN: 1098-1098</identifier><identifier>DOI: 10.1002/ima.22464</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adaptive systems ; Artificial neural networks ; Brain ; Brain cancer ; classifications ; Feature extraction ; features ; Fuzzy logic ; Image classification ; Image enhancement ; Image segmentation ; Magnetic resonance ; meningioma ; tumor ; Tumors ; Wavelet transforms</subject><ispartof>International journal of imaging systems and technology, 2021-03, Vol.31 (1), p.379-390</ispartof><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2124-95127d445a2b1586e577ac23c20786f4bdedfb8d900a333eac65780733f69ebe3</citedby><cites>FETCH-LOGICAL-c2124-95127d445a2b1586e577ac23c20786f4bdedfb8d900a333eac65780733f69ebe3</cites><orcidid>0000-0001-6152-472X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fima.22464$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fima.22464$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ragupathy, Balakumaresan</creatorcontrib><creatorcontrib>Karunakaran, Manivannan</creatorcontrib><title>A fuzzy logic‐based meningioma tumor detection in magnetic resonance brain images using CANFIS and U‐Net CNN classification</title><title>International journal of imaging systems and technology</title><description>This article develops a methodology for meningioma brain tumor detection process using fuzzy logic based enhancement and co‐active adaptive neuro fuzzy inference system and U‐Net convolutional neural network classification methods. The proposed meningioma tumor detection process consists of the following stages as, enhancement, feature extraction, and classifications. The enhancement of the source brain image is done using fuzzy logic and then dual tree‐complex wavelet transform is applied to this enhanced image at different levels of scale. The features are computed from the decomposed sub band images and these features are further classified using CANFIS classification method which identifies the meningioma brain image from nonmeningioma brain image. The performance of the proposed meningioma brain tumor detection and segmentation system is analyzed in terms of sensitivity, specificity, segmentation accuracy, and Dice coefficient index with detection rate.</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>classifications</subject><subject>Feature extraction</subject><subject>features</subject><subject>Fuzzy logic</subject><subject>Image classification</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Magnetic resonance</subject><subject>meningioma</subject><subject>tumor</subject><subject>Tumors</subject><subject>Wavelet transforms</subject><issn>0899-9457</issn><issn>1098-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIaztxfpZRxE-lEhbQdeQ4k8hV4hQ7EWo3cATOyElwCVs2MxrNN-9pHkLXlCwoIWypOrFgLAiDEzSjJIm9YzlFMxIniZcEPDpHF9ZuCaGUEz5DHymux8Nhj9u-UfL786sUFircgVa6UX0n8DB2vcEVDCAH1WusNO5Eo2FQEhuwvRZaAi6NcAvn3oDFo3XHOEvz-9ULFrrCGyecw4CzPMeyFdaqWklxlLtEZ7VoLVz99Tna3N-9Zo_e-vlhlaVrTzLKAi_hlEVVEHDBSsrjEHgUCcl8yUgUh3VQVlDVZVwlhAjf90HIkEcxiXy_DhMowZ-jm0l3Z_q3EexQbPvRaGdZsCAOeUho7DvqdqKk6a01UBc7434y-4KS4phv4abiN1_HLif2XbWw_x8sVk_pdPEDmvZ-Zw</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Ragupathy, Balakumaresan</creator><creator>Karunakaran, Manivannan</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6152-472X</orcidid></search><sort><creationdate>202103</creationdate><title>A fuzzy logic‐based meningioma tumor detection in magnetic resonance brain images using CANFIS and U‐Net CNN classification</title><author>Ragupathy, Balakumaresan ; Karunakaran, Manivannan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2124-95127d445a2b1586e577ac23c20786f4bdedfb8d900a333eac65780733f69ebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>classifications</topic><topic>Feature extraction</topic><topic>features</topic><topic>Fuzzy logic</topic><topic>Image classification</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Magnetic resonance</topic><topic>meningioma</topic><topic>tumor</topic><topic>Tumors</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ragupathy, Balakumaresan</creatorcontrib><creatorcontrib>Karunakaran, Manivannan</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of imaging systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ragupathy, Balakumaresan</au><au>Karunakaran, Manivannan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fuzzy logic‐based meningioma tumor detection in magnetic resonance brain images using CANFIS and U‐Net CNN classification</atitle><jtitle>International journal of imaging systems and technology</jtitle><date>2021-03</date><risdate>2021</risdate><volume>31</volume><issue>1</issue><spage>379</spage><epage>390</epage><pages>379-390</pages><issn>0899-9457</issn><eissn>1098-1098</eissn><abstract>This article develops a methodology for meningioma brain tumor detection process using fuzzy logic based enhancement and co‐active adaptive neuro fuzzy inference system and U‐Net convolutional neural network classification methods. The proposed meningioma tumor detection process consists of the following stages as, enhancement, feature extraction, and classifications. The enhancement of the source brain image is done using fuzzy logic and then dual tree‐complex wavelet transform is applied to this enhanced image at different levels of scale. The features are computed from the decomposed sub band images and these features are further classified using CANFIS classification method which identifies the meningioma brain image from nonmeningioma brain image. The performance of the proposed meningioma brain tumor detection and segmentation system is analyzed in terms of sensitivity, specificity, segmentation accuracy, and Dice coefficient index with detection rate.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ima.22464</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6152-472X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0899-9457
ispartof International journal of imaging systems and technology, 2021-03, Vol.31 (1), p.379-390
issn 0899-9457
1098-1098
language eng
recordid cdi_proquest_journals_2486560183
source Wiley Online Library Journals Frontfile Complete
subjects Adaptive systems
Artificial neural networks
Brain
Brain cancer
classifications
Feature extraction
features
Fuzzy logic
Image classification
Image enhancement
Image segmentation
Magnetic resonance
meningioma
tumor
Tumors
Wavelet transforms
title A fuzzy logic‐based meningioma tumor detection in magnetic resonance brain images using CANFIS and U‐Net CNN classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fuzzy%20logic%E2%80%90based%20meningioma%20tumor%20detection%20in%20magnetic%20resonance%20brain%20images%20using%20CANFIS%20and%20U%E2%80%90Net%20CNN%20classification&rft.jtitle=International%20journal%20of%20imaging%20systems%20and%20technology&rft.au=Ragupathy,%20Balakumaresan&rft.date=2021-03&rft.volume=31&rft.issue=1&rft.spage=379&rft.epage=390&rft.pages=379-390&rft.issn=0899-9457&rft.eissn=1098-1098&rft_id=info:doi/10.1002/ima.22464&rft_dat=%3Cproquest_cross%3E2486560183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486560183&rft_id=info:pmid/&rfr_iscdi=true