Multicolour photometry for exoplanet candidate validation

Context. The TESS and PLATO missions are expected to find vast numbers of new transiting planet candidates. However, only a fraction of these candidates will be legitimate planets, and the candidate validation will require a significant amount of follow-up resources. Radial velocity (RV) follow-up s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2019-10, Vol.630, p.A89
Hauptverfasser: Parviainen, H., Tingley, B., Deeg, H. J., Palle, E., Alonso, R., Montanes Rodriguez, P., Murgas, F., Narita, N., Fukui, A., Watanabe, N., Kusakabe, N., Tamura, M., Nishiumi, T., Prieto-Arranz, J., Klagyivik, P., Béjar, V. J. S., Crouzet, N., Mori, M., Hidalgo Soto, D., Casasayas Barris, N., Luque, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A89
container_title Astronomy and astrophysics (Berlin)
container_volume 630
creator Parviainen, H.
Tingley, B.
Deeg, H. J.
Palle, E.
Alonso, R.
Montanes Rodriguez, P.
Murgas, F.
Narita, N.
Fukui, A.
Watanabe, N.
Kusakabe, N.
Tamura, M.
Nishiumi, T.
Prieto-Arranz, J.
Klagyivik, P.
Béjar, V. J. S.
Crouzet, N.
Mori, M.
Hidalgo Soto, D.
Casasayas Barris, N.
Luque, R.
description Context. The TESS and PLATO missions are expected to find vast numbers of new transiting planet candidates. However, only a fraction of these candidates will be legitimate planets, and the candidate validation will require a significant amount of follow-up resources. Radial velocity (RV) follow-up study can be carried out only for the most promising candidates around bright, slowly rotating, stars. Thus, before devoting RV resources to candidates, they need to be vetted using cheaper methods, and, in the cases for which an RV confirmation is not feasible, the candidate’s true nature needs to be determined based on these alternative methods alone. Aims. We study the applicability of multicolour transit photometry in the validation of transiting planet candidates when the candidate signal arises from a real astrophysical source (transiting planet, eclipsing binary, etc.), and not from an instrumental artefact. Particularly, we aim to answer how securely we can estimate the true uncontaminated star-planet radius ratio when the light curve may contain contamination from unresolved light sources inside the photometry aperture when combining multicolour transit observations with a physics-based contamination model in a Bayesian parameter estimation setting. More generally, we study how the contamination level, colour differences between the planet host and contaminant stars, transit signal-to-noise ratio, and available prior information affect the contamination and true radius ratio estimates. Methods. The study is based on simulations and ground-based multicolour transit observations. The contamination analyses were carried out with a contamination model integrated into the PYTRANSIT v2 transit modelling package, and the observations were carried out with the MuSCAT2 multicolour imager installed in the 1.5 m Telescopio Carlos Sanchez in the Teide Observatory, in Tenerife. Results. We show that multicolour transit photometry can be used to estimate the amount of flux contamination and the true radius ratio. Combining the true radius ratio with an estimate for the stellar radius yields the true absolute radius of the transiting object, which is a valuable quantity in statistical candidate validation, and enough in itself to validate a candidate whose radius falls below the theoretical lower limit for a brown dwarf.
doi_str_mv 10.1051/0004-6361/201935709
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486553301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486553301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-55d121ec5a4d134c593cd11624fdef7c5a9f6dbd3e6a82bbde3d7bb1605a36233</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwBWwisQ71ePxIllABBbWwAbG0nNgRKWkcHBe1f0-ioq7moXvnjg4h10BvgQqYUUp5KlHCjFHIUSian5AJcGQpVVyekslRcU4u-n49jAwynJB8tW1iXfrGb0PSffnoNy6GfVL5kLid7xrTupiUprW1NdElv6YZm9q3l-SsMk3vrv7rlHw8PrzPF-ny7el5frdMS85kTIWwwMCVwnALyEuRY2kBJOOVdZUa9nklbWHRSZOxorAOrSoKkFQYlAxxSm4Od7vgf7auj3o9_NoOkZrxTAqBSGFQ4UFVBt_3wVW6C_XGhL0GqkdGeiSgRwL6yGhwpQdX3Ue3O1pM-NZSoRI6o59a3avly-uK6gX-AYNgaJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486553301</pqid></control><display><type>article</type><title>Multicolour photometry for exoplanet candidate validation</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Parviainen, H. ; Tingley, B. ; Deeg, H. J. ; Palle, E. ; Alonso, R. ; Montanes Rodriguez, P. ; Murgas, F. ; Narita, N. ; Fukui, A. ; Watanabe, N. ; Kusakabe, N. ; Tamura, M. ; Nishiumi, T. ; Prieto-Arranz, J. ; Klagyivik, P. ; Béjar, V. J. S. ; Crouzet, N. ; Mori, M. ; Hidalgo Soto, D. ; Casasayas Barris, N. ; Luque, R.</creator><creatorcontrib>Parviainen, H. ; Tingley, B. ; Deeg, H. J. ; Palle, E. ; Alonso, R. ; Montanes Rodriguez, P. ; Murgas, F. ; Narita, N. ; Fukui, A. ; Watanabe, N. ; Kusakabe, N. ; Tamura, M. ; Nishiumi, T. ; Prieto-Arranz, J. ; Klagyivik, P. ; Béjar, V. J. S. ; Crouzet, N. ; Mori, M. ; Hidalgo Soto, D. ; Casasayas Barris, N. ; Luque, R.</creatorcontrib><description>Context. The TESS and PLATO missions are expected to find vast numbers of new transiting planet candidates. However, only a fraction of these candidates will be legitimate planets, and the candidate validation will require a significant amount of follow-up resources. Radial velocity (RV) follow-up study can be carried out only for the most promising candidates around bright, slowly rotating, stars. Thus, before devoting RV resources to candidates, they need to be vetted using cheaper methods, and, in the cases for which an RV confirmation is not feasible, the candidate’s true nature needs to be determined based on these alternative methods alone. Aims. We study the applicability of multicolour transit photometry in the validation of transiting planet candidates when the candidate signal arises from a real astrophysical source (transiting planet, eclipsing binary, etc.), and not from an instrumental artefact. Particularly, we aim to answer how securely we can estimate the true uncontaminated star-planet radius ratio when the light curve may contain contamination from unresolved light sources inside the photometry aperture when combining multicolour transit observations with a physics-based contamination model in a Bayesian parameter estimation setting. More generally, we study how the contamination level, colour differences between the planet host and contaminant stars, transit signal-to-noise ratio, and available prior information affect the contamination and true radius ratio estimates. Methods. The study is based on simulations and ground-based multicolour transit observations. The contamination analyses were carried out with a contamination model integrated into the PYTRANSIT v2 transit modelling package, and the observations were carried out with the MuSCAT2 multicolour imager installed in the 1.5 m Telescopio Carlos Sanchez in the Teide Observatory, in Tenerife. Results. We show that multicolour transit photometry can be used to estimate the amount of flux contamination and the true radius ratio. Combining the true radius ratio with an estimate for the stellar radius yields the true absolute radius of the transiting object, which is a valuable quantity in statistical candidate validation, and enough in itself to validate a candidate whose radius falls below the theoretical lower limit for a brown dwarf.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201935709</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Candidates ; Contaminants ; Eclipsing binary stars ; Extrasolar planets ; Ground-based observation ; Light curve ; Light sources ; methods: data analysis ; methods: numerical ; methods: statistical ; Parameter estimation ; Photometry ; planetary systems ; planets and satellites: detection ; Radial velocity ; Signal to noise ratio ; Space missions ; Stellar rotation ; techniques: photometric ; Transit</subject><ispartof>Astronomy and astrophysics (Berlin), 2019-10, Vol.630, p.A89</ispartof><rights>Copyright EDP Sciences Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-55d121ec5a4d134c593cd11624fdef7c5a9f6dbd3e6a82bbde3d7bb1605a36233</citedby><cites>FETCH-LOGICAL-c426t-55d121ec5a4d134c593cd11624fdef7c5a9f6dbd3e6a82bbde3d7bb1605a36233</cites><orcidid>0000-0001-5519-1391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3714,27901,27902</link.rule.ids></links><search><creatorcontrib>Parviainen, H.</creatorcontrib><creatorcontrib>Tingley, B.</creatorcontrib><creatorcontrib>Deeg, H. J.</creatorcontrib><creatorcontrib>Palle, E.</creatorcontrib><creatorcontrib>Alonso, R.</creatorcontrib><creatorcontrib>Montanes Rodriguez, P.</creatorcontrib><creatorcontrib>Murgas, F.</creatorcontrib><creatorcontrib>Narita, N.</creatorcontrib><creatorcontrib>Fukui, A.</creatorcontrib><creatorcontrib>Watanabe, N.</creatorcontrib><creatorcontrib>Kusakabe, N.</creatorcontrib><creatorcontrib>Tamura, M.</creatorcontrib><creatorcontrib>Nishiumi, T.</creatorcontrib><creatorcontrib>Prieto-Arranz, J.</creatorcontrib><creatorcontrib>Klagyivik, P.</creatorcontrib><creatorcontrib>Béjar, V. J. S.</creatorcontrib><creatorcontrib>Crouzet, N.</creatorcontrib><creatorcontrib>Mori, M.</creatorcontrib><creatorcontrib>Hidalgo Soto, D.</creatorcontrib><creatorcontrib>Casasayas Barris, N.</creatorcontrib><creatorcontrib>Luque, R.</creatorcontrib><title>Multicolour photometry for exoplanet candidate validation</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. The TESS and PLATO missions are expected to find vast numbers of new transiting planet candidates. However, only a fraction of these candidates will be legitimate planets, and the candidate validation will require a significant amount of follow-up resources. Radial velocity (RV) follow-up study can be carried out only for the most promising candidates around bright, slowly rotating, stars. Thus, before devoting RV resources to candidates, they need to be vetted using cheaper methods, and, in the cases for which an RV confirmation is not feasible, the candidate’s true nature needs to be determined based on these alternative methods alone. Aims. We study the applicability of multicolour transit photometry in the validation of transiting planet candidates when the candidate signal arises from a real astrophysical source (transiting planet, eclipsing binary, etc.), and not from an instrumental artefact. Particularly, we aim to answer how securely we can estimate the true uncontaminated star-planet radius ratio when the light curve may contain contamination from unresolved light sources inside the photometry aperture when combining multicolour transit observations with a physics-based contamination model in a Bayesian parameter estimation setting. More generally, we study how the contamination level, colour differences between the planet host and contaminant stars, transit signal-to-noise ratio, and available prior information affect the contamination and true radius ratio estimates. Methods. The study is based on simulations and ground-based multicolour transit observations. The contamination analyses were carried out with a contamination model integrated into the PYTRANSIT v2 transit modelling package, and the observations were carried out with the MuSCAT2 multicolour imager installed in the 1.5 m Telescopio Carlos Sanchez in the Teide Observatory, in Tenerife. Results. We show that multicolour transit photometry can be used to estimate the amount of flux contamination and the true radius ratio. Combining the true radius ratio with an estimate for the stellar radius yields the true absolute radius of the transiting object, which is a valuable quantity in statistical candidate validation, and enough in itself to validate a candidate whose radius falls below the theoretical lower limit for a brown dwarf.</description><subject>Candidates</subject><subject>Contaminants</subject><subject>Eclipsing binary stars</subject><subject>Extrasolar planets</subject><subject>Ground-based observation</subject><subject>Light curve</subject><subject>Light sources</subject><subject>methods: data analysis</subject><subject>methods: numerical</subject><subject>methods: statistical</subject><subject>Parameter estimation</subject><subject>Photometry</subject><subject>planetary systems</subject><subject>planets and satellites: detection</subject><subject>Radial velocity</subject><subject>Signal to noise ratio</subject><subject>Space missions</subject><subject>Stellar rotation</subject><subject>techniques: photometric</subject><subject>Transit</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwBWwisQ71ePxIllABBbWwAbG0nNgRKWkcHBe1f0-ioq7moXvnjg4h10BvgQqYUUp5KlHCjFHIUSian5AJcGQpVVyekslRcU4u-n49jAwynJB8tW1iXfrGb0PSffnoNy6GfVL5kLid7xrTupiUprW1NdElv6YZm9q3l-SsMk3vrv7rlHw8PrzPF-ny7el5frdMS85kTIWwwMCVwnALyEuRY2kBJOOVdZUa9nklbWHRSZOxorAOrSoKkFQYlAxxSm4Od7vgf7auj3o9_NoOkZrxTAqBSGFQ4UFVBt_3wVW6C_XGhL0GqkdGeiSgRwL6yGhwpQdX3Ue3O1pM-NZSoRI6o59a3avly-uK6gX-AYNgaJQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Parviainen, H.</creator><creator>Tingley, B.</creator><creator>Deeg, H. J.</creator><creator>Palle, E.</creator><creator>Alonso, R.</creator><creator>Montanes Rodriguez, P.</creator><creator>Murgas, F.</creator><creator>Narita, N.</creator><creator>Fukui, A.</creator><creator>Watanabe, N.</creator><creator>Kusakabe, N.</creator><creator>Tamura, M.</creator><creator>Nishiumi, T.</creator><creator>Prieto-Arranz, J.</creator><creator>Klagyivik, P.</creator><creator>Béjar, V. J. S.</creator><creator>Crouzet, N.</creator><creator>Mori, M.</creator><creator>Hidalgo Soto, D.</creator><creator>Casasayas Barris, N.</creator><creator>Luque, R.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5519-1391</orcidid></search><sort><creationdate>20191001</creationdate><title>Multicolour photometry for exoplanet candidate validation</title><author>Parviainen, H. ; Tingley, B. ; Deeg, H. J. ; Palle, E. ; Alonso, R. ; Montanes Rodriguez, P. ; Murgas, F. ; Narita, N. ; Fukui, A. ; Watanabe, N. ; Kusakabe, N. ; Tamura, M. ; Nishiumi, T. ; Prieto-Arranz, J. ; Klagyivik, P. ; Béjar, V. J. S. ; Crouzet, N. ; Mori, M. ; Hidalgo Soto, D. ; Casasayas Barris, N. ; Luque, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-55d121ec5a4d134c593cd11624fdef7c5a9f6dbd3e6a82bbde3d7bb1605a36233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Candidates</topic><topic>Contaminants</topic><topic>Eclipsing binary stars</topic><topic>Extrasolar planets</topic><topic>Ground-based observation</topic><topic>Light curve</topic><topic>Light sources</topic><topic>methods: data analysis</topic><topic>methods: numerical</topic><topic>methods: statistical</topic><topic>Parameter estimation</topic><topic>Photometry</topic><topic>planetary systems</topic><topic>planets and satellites: detection</topic><topic>Radial velocity</topic><topic>Signal to noise ratio</topic><topic>Space missions</topic><topic>Stellar rotation</topic><topic>techniques: photometric</topic><topic>Transit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parviainen, H.</creatorcontrib><creatorcontrib>Tingley, B.</creatorcontrib><creatorcontrib>Deeg, H. J.</creatorcontrib><creatorcontrib>Palle, E.</creatorcontrib><creatorcontrib>Alonso, R.</creatorcontrib><creatorcontrib>Montanes Rodriguez, P.</creatorcontrib><creatorcontrib>Murgas, F.</creatorcontrib><creatorcontrib>Narita, N.</creatorcontrib><creatorcontrib>Fukui, A.</creatorcontrib><creatorcontrib>Watanabe, N.</creatorcontrib><creatorcontrib>Kusakabe, N.</creatorcontrib><creatorcontrib>Tamura, M.</creatorcontrib><creatorcontrib>Nishiumi, T.</creatorcontrib><creatorcontrib>Prieto-Arranz, J.</creatorcontrib><creatorcontrib>Klagyivik, P.</creatorcontrib><creatorcontrib>Béjar, V. J. S.</creatorcontrib><creatorcontrib>Crouzet, N.</creatorcontrib><creatorcontrib>Mori, M.</creatorcontrib><creatorcontrib>Hidalgo Soto, D.</creatorcontrib><creatorcontrib>Casasayas Barris, N.</creatorcontrib><creatorcontrib>Luque, R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parviainen, H.</au><au>Tingley, B.</au><au>Deeg, H. J.</au><au>Palle, E.</au><au>Alonso, R.</au><au>Montanes Rodriguez, P.</au><au>Murgas, F.</au><au>Narita, N.</au><au>Fukui, A.</au><au>Watanabe, N.</au><au>Kusakabe, N.</au><au>Tamura, M.</au><au>Nishiumi, T.</au><au>Prieto-Arranz, J.</au><au>Klagyivik, P.</au><au>Béjar, V. J. S.</au><au>Crouzet, N.</au><au>Mori, M.</au><au>Hidalgo Soto, D.</au><au>Casasayas Barris, N.</au><au>Luque, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicolour photometry for exoplanet candidate validation</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>630</volume><spage>A89</spage><pages>A89-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Context. The TESS and PLATO missions are expected to find vast numbers of new transiting planet candidates. However, only a fraction of these candidates will be legitimate planets, and the candidate validation will require a significant amount of follow-up resources. Radial velocity (RV) follow-up study can be carried out only for the most promising candidates around bright, slowly rotating, stars. Thus, before devoting RV resources to candidates, they need to be vetted using cheaper methods, and, in the cases for which an RV confirmation is not feasible, the candidate’s true nature needs to be determined based on these alternative methods alone. Aims. We study the applicability of multicolour transit photometry in the validation of transiting planet candidates when the candidate signal arises from a real astrophysical source (transiting planet, eclipsing binary, etc.), and not from an instrumental artefact. Particularly, we aim to answer how securely we can estimate the true uncontaminated star-planet radius ratio when the light curve may contain contamination from unresolved light sources inside the photometry aperture when combining multicolour transit observations with a physics-based contamination model in a Bayesian parameter estimation setting. More generally, we study how the contamination level, colour differences between the planet host and contaminant stars, transit signal-to-noise ratio, and available prior information affect the contamination and true radius ratio estimates. Methods. The study is based on simulations and ground-based multicolour transit observations. The contamination analyses were carried out with a contamination model integrated into the PYTRANSIT v2 transit modelling package, and the observations were carried out with the MuSCAT2 multicolour imager installed in the 1.5 m Telescopio Carlos Sanchez in the Teide Observatory, in Tenerife. Results. We show that multicolour transit photometry can be used to estimate the amount of flux contamination and the true radius ratio. Combining the true radius ratio with an estimate for the stellar radius yields the true absolute radius of the transiting object, which is a valuable quantity in statistical candidate validation, and enough in itself to validate a candidate whose radius falls below the theoretical lower limit for a brown dwarf.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201935709</doi><orcidid>https://orcid.org/0000-0001-5519-1391</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2019-10, Vol.630, p.A89
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_journals_2486553301
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects Candidates
Contaminants
Eclipsing binary stars
Extrasolar planets
Ground-based observation
Light curve
Light sources
methods: data analysis
methods: numerical
methods: statistical
Parameter estimation
Photometry
planetary systems
planets and satellites: detection
Radial velocity
Signal to noise ratio
Space missions
Stellar rotation
techniques: photometric
Transit
title Multicolour photometry for exoplanet candidate validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicolour%20photometry%20for%20exoplanet%20candidate%20validation&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Parviainen,%20H.&rft.date=2019-10-01&rft.volume=630&rft.spage=A89&rft.pages=A89-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201935709&rft_dat=%3Cproquest_cross%3E2486553301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486553301&rft_id=info:pmid/&rfr_iscdi=true