Phase transitions of poly(oligo(ethylene glycol) methyl ether methacrylate)-water systems
The phase diagrams for poly (oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) hydrogels with varying side chain lengths over broad temperature and composition ranges are shown for the first time. It is also shown that the ability of water to crystallize is strictly correlated with the occ...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2021-01, Vol.212, p.123247, Article 123247 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 123247 |
container_title | Polymer (Guilford) |
container_volume | 212 |
creator | Czaderna-Lekka, Anna Kozanecki, Marcin Matusiak, Malgorzata Kadlubowski, Slawomir |
description | The phase diagrams for poly (oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) hydrogels with varying side chain lengths over broad temperature and composition ranges are shown for the first time. It is also shown that the ability of water to crystallize is strictly correlated with the occurrence of a volume phase transition in hydrogels, as both phenomena require the continuous water pathways in the system. A discontinuity in the water phase appears above wp = 0.83 for PMEO2MA and wp = 0.56 for other POEGMAs. In contrast to PMEO2MA, POEGMA hydrogels with longer oligoether chains are characterized by two distinct regimes for the glass transition as a function of polymer content. It was also confirmed that crystallization of the polymer network can be observed for POEGMA networks with suitably long oligoether chain lengths, namely, n ≥ 7. Moreover, the range of the polymer crystalline phase occurrence was found to increase with the length of the oligoether chain.
[Display omitted]
•The phase diagrams for POEGMA-water systems are shown for the first time.•Two types of behavior can be distinguished due to the oligoether side chain lengths.•The ability of water to crystallize is correlated with the presence of VPT in gels.•POEGMA polymer networks can crystallize if oligoether side chains are long enough. |
doi_str_mv | 10.1016/j.polymer.2020.123247 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486551921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386120310727</els_id><sourcerecordid>2486551921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ae2e76bdea25afe284770a26c3626da69bb5789b2377de0a7288c9e1716529383</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMInIEXi0h5S7HViJyeEEC-pEhzgwMlynE2bKI2L7YLy96RN71x2tbMzs9oh5JrRBaNM3DaLrW37DboFUBgw4JDIEzJhmeQxQM5OyYRSDjHPBDsnF943lFJIIZmQr_e19hgFpztfh9p2PrJVtPeb2bZe2RmGdd9ih9Gq7Y1t59HmgERDRXcYtHF9qwPO49-husj3PuDGX5KzSrcer459Sj6fHj8eXuLl2_Prw_0yNpzLEGsElKIoUUOqK4QskZJqEIYLEKUWeVGkMssL4FKWSLWELDM5MslECjnP-JTcjL5bZ7936INq7M51w0kFSSbSlOXABlY6soyz3jus1NbVG-16xajap6gadUxR7VNUY4qD7m7U4fDCTz1svamxM1jWDk1Qpa3_cfgDtqZ-qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486551921</pqid></control><display><type>article</type><title>Phase transitions of poly(oligo(ethylene glycol) methyl ether methacrylate)-water systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Czaderna-Lekka, Anna ; Kozanecki, Marcin ; Matusiak, Malgorzata ; Kadlubowski, Slawomir</creator><creatorcontrib>Czaderna-Lekka, Anna ; Kozanecki, Marcin ; Matusiak, Malgorzata ; Kadlubowski, Slawomir</creatorcontrib><description>The phase diagrams for poly (oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) hydrogels with varying side chain lengths over broad temperature and composition ranges are shown for the first time. It is also shown that the ability of water to crystallize is strictly correlated with the occurrence of a volume phase transition in hydrogels, as both phenomena require the continuous water pathways in the system. A discontinuity in the water phase appears above wp = 0.83 for PMEO2MA and wp = 0.56 for other POEGMAs. In contrast to PMEO2MA, POEGMA hydrogels with longer oligoether chains are characterized by two distinct regimes for the glass transition as a function of polymer content. It was also confirmed that crystallization of the polymer network can be observed for POEGMA networks with suitably long oligoether chain lengths, namely, n ≥ 7. Moreover, the range of the polymer crystalline phase occurrence was found to increase with the length of the oligoether chain.
[Display omitted]
•The phase diagrams for POEGMA-water systems are shown for the first time.•Two types of behavior can be distinguished due to the oligoether side chain lengths.•The ability of water to crystallize is correlated with the presence of VPT in gels.•POEGMA polymer networks can crystallize if oligoether side chains are long enough.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2020.123247</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Crystallization ; Ethylene ; Ethylene glycol ; Glass transition ; Hydrogels ; Phase diagrams ; Phase transitions ; Poly(2-(2-methoxyethoxy)ethyl methacrylate) PMEO2MA ; Polyethylene glycol ; Polymers ; Stimuli-responsive materials ; Thermo-responsive hydrogel</subject><ispartof>Polymer (Guilford), 2021-01, Vol.212, p.123247, Article 123247</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 6, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ae2e76bdea25afe284770a26c3626da69bb5789b2377de0a7288c9e1716529383</citedby><cites>FETCH-LOGICAL-c337t-ae2e76bdea25afe284770a26c3626da69bb5789b2377de0a7288c9e1716529383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2020.123247$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Czaderna-Lekka, Anna</creatorcontrib><creatorcontrib>Kozanecki, Marcin</creatorcontrib><creatorcontrib>Matusiak, Malgorzata</creatorcontrib><creatorcontrib>Kadlubowski, Slawomir</creatorcontrib><title>Phase transitions of poly(oligo(ethylene glycol) methyl ether methacrylate)-water systems</title><title>Polymer (Guilford)</title><description>The phase diagrams for poly (oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) hydrogels with varying side chain lengths over broad temperature and composition ranges are shown for the first time. It is also shown that the ability of water to crystallize is strictly correlated with the occurrence of a volume phase transition in hydrogels, as both phenomena require the continuous water pathways in the system. A discontinuity in the water phase appears above wp = 0.83 for PMEO2MA and wp = 0.56 for other POEGMAs. In contrast to PMEO2MA, POEGMA hydrogels with longer oligoether chains are characterized by two distinct regimes for the glass transition as a function of polymer content. It was also confirmed that crystallization of the polymer network can be observed for POEGMA networks with suitably long oligoether chain lengths, namely, n ≥ 7. Moreover, the range of the polymer crystalline phase occurrence was found to increase with the length of the oligoether chain.
[Display omitted]
•The phase diagrams for POEGMA-water systems are shown for the first time.•Two types of behavior can be distinguished due to the oligoether side chain lengths.•The ability of water to crystallize is correlated with the presence of VPT in gels.•POEGMA polymer networks can crystallize if oligoether side chains are long enough.</description><subject>Crystallization</subject><subject>Ethylene</subject><subject>Ethylene glycol</subject><subject>Glass transition</subject><subject>Hydrogels</subject><subject>Phase diagrams</subject><subject>Phase transitions</subject><subject>Poly(2-(2-methoxyethoxy)ethyl methacrylate) PMEO2MA</subject><subject>Polyethylene glycol</subject><subject>Polymers</subject><subject>Stimuli-responsive materials</subject><subject>Thermo-responsive hydrogel</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMInIEXi0h5S7HViJyeEEC-pEhzgwMlynE2bKI2L7YLy96RN71x2tbMzs9oh5JrRBaNM3DaLrW37DboFUBgw4JDIEzJhmeQxQM5OyYRSDjHPBDsnF943lFJIIZmQr_e19hgFpztfh9p2PrJVtPeb2bZe2RmGdd9ih9Gq7Y1t59HmgERDRXcYtHF9qwPO49-husj3PuDGX5KzSrcer459Sj6fHj8eXuLl2_Prw_0yNpzLEGsElKIoUUOqK4QskZJqEIYLEKUWeVGkMssL4FKWSLWELDM5MslECjnP-JTcjL5bZ7936INq7M51w0kFSSbSlOXABlY6soyz3jus1NbVG-16xajap6gadUxR7VNUY4qD7m7U4fDCTz1svamxM1jWDk1Qpa3_cfgDtqZ-qg</recordid><startdate>20210106</startdate><enddate>20210106</enddate><creator>Czaderna-Lekka, Anna</creator><creator>Kozanecki, Marcin</creator><creator>Matusiak, Malgorzata</creator><creator>Kadlubowski, Slawomir</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20210106</creationdate><title>Phase transitions of poly(oligo(ethylene glycol) methyl ether methacrylate)-water systems</title><author>Czaderna-Lekka, Anna ; Kozanecki, Marcin ; Matusiak, Malgorzata ; Kadlubowski, Slawomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ae2e76bdea25afe284770a26c3626da69bb5789b2377de0a7288c9e1716529383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crystallization</topic><topic>Ethylene</topic><topic>Ethylene glycol</topic><topic>Glass transition</topic><topic>Hydrogels</topic><topic>Phase diagrams</topic><topic>Phase transitions</topic><topic>Poly(2-(2-methoxyethoxy)ethyl methacrylate) PMEO2MA</topic><topic>Polyethylene glycol</topic><topic>Polymers</topic><topic>Stimuli-responsive materials</topic><topic>Thermo-responsive hydrogel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czaderna-Lekka, Anna</creatorcontrib><creatorcontrib>Kozanecki, Marcin</creatorcontrib><creatorcontrib>Matusiak, Malgorzata</creatorcontrib><creatorcontrib>Kadlubowski, Slawomir</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czaderna-Lekka, Anna</au><au>Kozanecki, Marcin</au><au>Matusiak, Malgorzata</au><au>Kadlubowski, Slawomir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase transitions of poly(oligo(ethylene glycol) methyl ether methacrylate)-water systems</atitle><jtitle>Polymer (Guilford)</jtitle><date>2021-01-06</date><risdate>2021</risdate><volume>212</volume><spage>123247</spage><pages>123247-</pages><artnum>123247</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>The phase diagrams for poly (oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) hydrogels with varying side chain lengths over broad temperature and composition ranges are shown for the first time. It is also shown that the ability of water to crystallize is strictly correlated with the occurrence of a volume phase transition in hydrogels, as both phenomena require the continuous water pathways in the system. A discontinuity in the water phase appears above wp = 0.83 for PMEO2MA and wp = 0.56 for other POEGMAs. In contrast to PMEO2MA, POEGMA hydrogels with longer oligoether chains are characterized by two distinct regimes for the glass transition as a function of polymer content. It was also confirmed that crystallization of the polymer network can be observed for POEGMA networks with suitably long oligoether chain lengths, namely, n ≥ 7. Moreover, the range of the polymer crystalline phase occurrence was found to increase with the length of the oligoether chain.
[Display omitted]
•The phase diagrams for POEGMA-water systems are shown for the first time.•Two types of behavior can be distinguished due to the oligoether side chain lengths.•The ability of water to crystallize is correlated with the presence of VPT in gels.•POEGMA polymer networks can crystallize if oligoether side chains are long enough.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2020.123247</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2021-01, Vol.212, p.123247, Article 123247 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_2486551921 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Crystallization Ethylene Ethylene glycol Glass transition Hydrogels Phase diagrams Phase transitions Poly(2-(2-methoxyethoxy)ethyl methacrylate) PMEO2MA Polyethylene glycol Polymers Stimuli-responsive materials Thermo-responsive hydrogel |
title | Phase transitions of poly(oligo(ethylene glycol) methyl ether methacrylate)-water systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20transitions%20of%20poly(oligo(ethylene%20glycol)%20methyl%20ether%20methacrylate)-water%20systems&rft.jtitle=Polymer%20(Guilford)&rft.au=Czaderna-Lekka,%20Anna&rft.date=2021-01-06&rft.volume=212&rft.spage=123247&rft.pages=123247-&rft.artnum=123247&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2020.123247&rft_dat=%3Cproquest_cross%3E2486551921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486551921&rft_id=info:pmid/&rft_els_id=S0032386120310727&rfr_iscdi=true |