Polymer solutions: Equilibrium clusters versus shear clusters

Polymer solutions are inhomogeneous on mesoscopic scales as a result of chemical bonds linking their monomeric units. This situation leads to polymer clusters within which the polymer concentration ccluster is only a small fraction of the overall concentration c. The ratio c/ ccluster (overlap param...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2021-01, Vol.212, p.123149, Article 123149
1. Verfasser: Wolf, Bernhard A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 123149
container_title Polymer (Guilford)
container_volume 212
creator Wolf, Bernhard A.
description Polymer solutions are inhomogeneous on mesoscopic scales as a result of chemical bonds linking their monomeric units. This situation leads to polymer clusters within which the polymer concentration ccluster is only a small fraction of the overall concentration c. The ratio c/ ccluster (overlap parameters Ω) quantifies the number of clusters that need to overlap to yield c. Equilibrium clusters (minimization of Gibbs energy) and shear clusters (minimization of entropy production) differ fundamentally where Ωequil ≥ Ωshear. Only in the vicinity of the glass transition temperature and at high concentration the opposite is the case. Experimental information on Ωequil as a function of φ, the volume fraction of polymer, yields coil-overlap and cross-over concentrations in agreement with the results of scattering studies; analogous information on Ωshear (φ) gives access to cross-over concentrations under shear. Theoretical aspects and questions of practical interest arising from the observed differences between equilibrium and shear clusters are being discussed. [Display omitted] •Polymer solutions are inhomogeneous on mesoscopic scales; they form clusters.•Segmental clusters (resulting from chain connectivity) prevail under equilibrium conditions.•Molecular clusters (caused by entropy minimization) form under Newtonian shear.•The polymer concentration in equilibrium clusters is normally much less than in shear clusters.•Opposite behavior: Near glass transition T and at high polymer concentrations.
doi_str_mv 10.1016/j.polymer.2020.123149
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486551773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386120309745</els_id><sourcerecordid>2486551773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ae02aaac28bf811599dade7140e48cf3c55e1a8ca8e673c90f9c911d572ae5f23</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKsfQVjwvDWTbHazgoiU-gcKetBzSLOzmGXbtMmm0G9vyhavXmZg5r03zI-QW6AzoFDed7Ot6w9r9DNGWZoxDkV9RiYgK54zVsM5mVDKWc5lCZfkKoSOUsoEKybk8XO0ZsH1cbBuEx6yxS7a3q68jevM9DEM6EO2TyWGLPyg9n_Ta3LR6j7gzalPyffL4mv-li8_Xt_nz8vccF4NuUbKtNaGyVUrAURdN7rBCgqKhTQtN0IgaGm0xLLipqZtbWqARlRMo2gZn5K7MXfr3S5iGFTnot-kk4oVshQCqoonlRhVxrsQPLZq6-1a-4MCqo6kVKdOpNSRlBpJJd_T6MP0wt6mbTAWNwYb69EMqnH2n4RfWFF1nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486551773</pqid></control><display><type>article</type><title>Polymer solutions: Equilibrium clusters versus shear clusters</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Wolf, Bernhard A.</creator><creatorcontrib>Wolf, Bernhard A.</creatorcontrib><description>Polymer solutions are inhomogeneous on mesoscopic scales as a result of chemical bonds linking their monomeric units. This situation leads to polymer clusters within which the polymer concentration ccluster is only a small fraction of the overall concentration c. The ratio c/ ccluster (overlap parameters Ω) quantifies the number of clusters that need to overlap to yield c. Equilibrium clusters (minimization of Gibbs energy) and shear clusters (minimization of entropy production) differ fundamentally where Ωequil ≥ Ωshear. Only in the vicinity of the glass transition temperature and at high concentration the opposite is the case. Experimental information on Ωequil as a function of φ, the volume fraction of polymer, yields coil-overlap and cross-over concentrations in agreement with the results of scattering studies; analogous information on Ωshear (φ) gives access to cross-over concentrations under shear. Theoretical aspects and questions of practical interest arising from the observed differences between equilibrium and shear clusters are being discussed. [Display omitted] •Polymer solutions are inhomogeneous on mesoscopic scales; they form clusters.•Segmental clusters (resulting from chain connectivity) prevail under equilibrium conditions.•Molecular clusters (caused by entropy minimization) form under Newtonian shear.•The polymer concentration in equilibrium clusters is normally much less than in shear clusters.•Opposite behavior: Near glass transition T and at high polymer concentrations.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2020.123149</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Chemical bonds ; Clusters ; Coils ; Cross-over concentrations ; Entropy ; Glass transition temperature ; Optimization ; Overlap concentrations ; Polymer clusters ; Polymers ; Shear ; Transition temperatures</subject><ispartof>Polymer (Guilford), 2021-01, Vol.212, p.123149, Article 123149</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Jan 6, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ae02aaac28bf811599dade7140e48cf3c55e1a8ca8e673c90f9c911d572ae5f23</citedby><cites>FETCH-LOGICAL-c337t-ae02aaac28bf811599dade7140e48cf3c55e1a8ca8e673c90f9c911d572ae5f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2020.123149$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Wolf, Bernhard A.</creatorcontrib><title>Polymer solutions: Equilibrium clusters versus shear clusters</title><title>Polymer (Guilford)</title><description>Polymer solutions are inhomogeneous on mesoscopic scales as a result of chemical bonds linking their monomeric units. This situation leads to polymer clusters within which the polymer concentration ccluster is only a small fraction of the overall concentration c. The ratio c/ ccluster (overlap parameters Ω) quantifies the number of clusters that need to overlap to yield c. Equilibrium clusters (minimization of Gibbs energy) and shear clusters (minimization of entropy production) differ fundamentally where Ωequil ≥ Ωshear. Only in the vicinity of the glass transition temperature and at high concentration the opposite is the case. Experimental information on Ωequil as a function of φ, the volume fraction of polymer, yields coil-overlap and cross-over concentrations in agreement with the results of scattering studies; analogous information on Ωshear (φ) gives access to cross-over concentrations under shear. Theoretical aspects and questions of practical interest arising from the observed differences between equilibrium and shear clusters are being discussed. [Display omitted] •Polymer solutions are inhomogeneous on mesoscopic scales; they form clusters.•Segmental clusters (resulting from chain connectivity) prevail under equilibrium conditions.•Molecular clusters (caused by entropy minimization) form under Newtonian shear.•The polymer concentration in equilibrium clusters is normally much less than in shear clusters.•Opposite behavior: Near glass transition T and at high polymer concentrations.</description><subject>Chemical bonds</subject><subject>Clusters</subject><subject>Coils</subject><subject>Cross-over concentrations</subject><subject>Entropy</subject><subject>Glass transition temperature</subject><subject>Optimization</subject><subject>Overlap concentrations</subject><subject>Polymer clusters</subject><subject>Polymers</subject><subject>Shear</subject><subject>Transition temperatures</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKsfQVjwvDWTbHazgoiU-gcKetBzSLOzmGXbtMmm0G9vyhavXmZg5r03zI-QW6AzoFDed7Ot6w9r9DNGWZoxDkV9RiYgK54zVsM5mVDKWc5lCZfkKoSOUsoEKybk8XO0ZsH1cbBuEx6yxS7a3q68jevM9DEM6EO2TyWGLPyg9n_Ta3LR6j7gzalPyffL4mv-li8_Xt_nz8vccF4NuUbKtNaGyVUrAURdN7rBCgqKhTQtN0IgaGm0xLLipqZtbWqARlRMo2gZn5K7MXfr3S5iGFTnot-kk4oVshQCqoonlRhVxrsQPLZq6-1a-4MCqo6kVKdOpNSRlBpJJd_T6MP0wt6mbTAWNwYb69EMqnH2n4RfWFF1nA</recordid><startdate>20210106</startdate><enddate>20210106</enddate><creator>Wolf, Bernhard A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20210106</creationdate><title>Polymer solutions: Equilibrium clusters versus shear clusters</title><author>Wolf, Bernhard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ae02aaac28bf811599dade7140e48cf3c55e1a8ca8e673c90f9c911d572ae5f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical bonds</topic><topic>Clusters</topic><topic>Coils</topic><topic>Cross-over concentrations</topic><topic>Entropy</topic><topic>Glass transition temperature</topic><topic>Optimization</topic><topic>Overlap concentrations</topic><topic>Polymer clusters</topic><topic>Polymers</topic><topic>Shear</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, Bernhard A.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, Bernhard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer solutions: Equilibrium clusters versus shear clusters</atitle><jtitle>Polymer (Guilford)</jtitle><date>2021-01-06</date><risdate>2021</risdate><volume>212</volume><spage>123149</spage><pages>123149-</pages><artnum>123149</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Polymer solutions are inhomogeneous on mesoscopic scales as a result of chemical bonds linking their monomeric units. This situation leads to polymer clusters within which the polymer concentration ccluster is only a small fraction of the overall concentration c. The ratio c/ ccluster (overlap parameters Ω) quantifies the number of clusters that need to overlap to yield c. Equilibrium clusters (minimization of Gibbs energy) and shear clusters (minimization of entropy production) differ fundamentally where Ωequil ≥ Ωshear. Only in the vicinity of the glass transition temperature and at high concentration the opposite is the case. Experimental information on Ωequil as a function of φ, the volume fraction of polymer, yields coil-overlap and cross-over concentrations in agreement with the results of scattering studies; analogous information on Ωshear (φ) gives access to cross-over concentrations under shear. Theoretical aspects and questions of practical interest arising from the observed differences between equilibrium and shear clusters are being discussed. [Display omitted] •Polymer solutions are inhomogeneous on mesoscopic scales; they form clusters.•Segmental clusters (resulting from chain connectivity) prevail under equilibrium conditions.•Molecular clusters (caused by entropy minimization) form under Newtonian shear.•The polymer concentration in equilibrium clusters is normally much less than in shear clusters.•Opposite behavior: Near glass transition T and at high polymer concentrations.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2020.123149</doi></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2021-01, Vol.212, p.123149, Article 123149
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_journals_2486551773
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Chemical bonds
Clusters
Coils
Cross-over concentrations
Entropy
Glass transition temperature
Optimization
Overlap concentrations
Polymer clusters
Polymers
Shear
Transition temperatures
title Polymer solutions: Equilibrium clusters versus shear clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%20solutions:%20Equilibrium%20clusters%20versus%20shear%20clusters&rft.jtitle=Polymer%20(Guilford)&rft.au=Wolf,%20Bernhard%20A.&rft.date=2021-01-06&rft.volume=212&rft.spage=123149&rft.pages=123149-&rft.artnum=123149&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2020.123149&rft_dat=%3Cproquest_cross%3E2486551773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486551773&rft_id=info:pmid/&rft_els_id=S0032386120309745&rfr_iscdi=true