Polymer solutions: Equilibrium clusters versus shear clusters
Polymer solutions are inhomogeneous on mesoscopic scales as a result of chemical bonds linking their monomeric units. This situation leads to polymer clusters within which the polymer concentration ccluster is only a small fraction of the overall concentration c. The ratio c/ ccluster (overlap param...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2021-01, Vol.212, p.123149, Article 123149 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 123149 |
container_title | Polymer (Guilford) |
container_volume | 212 |
creator | Wolf, Bernhard A. |
description | Polymer solutions are inhomogeneous on mesoscopic scales as a result of chemical bonds linking their monomeric units. This situation leads to polymer clusters within which the polymer concentration ccluster is only a small fraction of the overall concentration c. The ratio c/ ccluster (overlap parameters Ω) quantifies the number of clusters that need to overlap to yield c. Equilibrium clusters (minimization of Gibbs energy) and shear clusters (minimization of entropy production) differ fundamentally where Ωequil ≥ Ωshear. Only in the vicinity of the glass transition temperature and at high concentration the opposite is the case. Experimental information on Ωequil as a function of φ, the volume fraction of polymer, yields coil-overlap and cross-over concentrations in agreement with the results of scattering studies; analogous information on Ωshear (φ) gives access to cross-over concentrations under shear. Theoretical aspects and questions of practical interest arising from the observed differences between equilibrium and shear clusters are being discussed.
[Display omitted]
•Polymer solutions are inhomogeneous on mesoscopic scales; they form clusters.•Segmental clusters (resulting from chain connectivity) prevail under equilibrium conditions.•Molecular clusters (caused by entropy minimization) form under Newtonian shear.•The polymer concentration in equilibrium clusters is normally much less than in shear clusters.•Opposite behavior: Near glass transition T and at high polymer concentrations. |
doi_str_mv | 10.1016/j.polymer.2020.123149 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486551773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386120309745</els_id><sourcerecordid>2486551773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ae02aaac28bf811599dade7140e48cf3c55e1a8ca8e673c90f9c911d572ae5f23</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKsfQVjwvDWTbHazgoiU-gcKetBzSLOzmGXbtMmm0G9vyhavXmZg5r03zI-QW6AzoFDed7Ot6w9r9DNGWZoxDkV9RiYgK54zVsM5mVDKWc5lCZfkKoSOUsoEKybk8XO0ZsH1cbBuEx6yxS7a3q68jevM9DEM6EO2TyWGLPyg9n_Ta3LR6j7gzalPyffL4mv-li8_Xt_nz8vccF4NuUbKtNaGyVUrAURdN7rBCgqKhTQtN0IgaGm0xLLipqZtbWqARlRMo2gZn5K7MXfr3S5iGFTnot-kk4oVshQCqoonlRhVxrsQPLZq6-1a-4MCqo6kVKdOpNSRlBpJJd_T6MP0wt6mbTAWNwYb69EMqnH2n4RfWFF1nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486551773</pqid></control><display><type>article</type><title>Polymer solutions: Equilibrium clusters versus shear clusters</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Wolf, Bernhard A.</creator><creatorcontrib>Wolf, Bernhard A.</creatorcontrib><description>Polymer solutions are inhomogeneous on mesoscopic scales as a result of chemical bonds linking their monomeric units. This situation leads to polymer clusters within which the polymer concentration ccluster is only a small fraction of the overall concentration c. The ratio c/ ccluster (overlap parameters Ω) quantifies the number of clusters that need to overlap to yield c. Equilibrium clusters (minimization of Gibbs energy) and shear clusters (minimization of entropy production) differ fundamentally where Ωequil ≥ Ωshear. Only in the vicinity of the glass transition temperature and at high concentration the opposite is the case. Experimental information on Ωequil as a function of φ, the volume fraction of polymer, yields coil-overlap and cross-over concentrations in agreement with the results of scattering studies; analogous information on Ωshear (φ) gives access to cross-over concentrations under shear. Theoretical aspects and questions of practical interest arising from the observed differences between equilibrium and shear clusters are being discussed.
[Display omitted]
•Polymer solutions are inhomogeneous on mesoscopic scales; they form clusters.•Segmental clusters (resulting from chain connectivity) prevail under equilibrium conditions.•Molecular clusters (caused by entropy minimization) form under Newtonian shear.•The polymer concentration in equilibrium clusters is normally much less than in shear clusters.•Opposite behavior: Near glass transition T and at high polymer concentrations.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2020.123149</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Chemical bonds ; Clusters ; Coils ; Cross-over concentrations ; Entropy ; Glass transition temperature ; Optimization ; Overlap concentrations ; Polymer clusters ; Polymers ; Shear ; Transition temperatures</subject><ispartof>Polymer (Guilford), 2021-01, Vol.212, p.123149, Article 123149</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Jan 6, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ae02aaac28bf811599dade7140e48cf3c55e1a8ca8e673c90f9c911d572ae5f23</citedby><cites>FETCH-LOGICAL-c337t-ae02aaac28bf811599dade7140e48cf3c55e1a8ca8e673c90f9c911d572ae5f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2020.123149$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Wolf, Bernhard A.</creatorcontrib><title>Polymer solutions: Equilibrium clusters versus shear clusters</title><title>Polymer (Guilford)</title><description>Polymer solutions are inhomogeneous on mesoscopic scales as a result of chemical bonds linking their monomeric units. This situation leads to polymer clusters within which the polymer concentration ccluster is only a small fraction of the overall concentration c. The ratio c/ ccluster (overlap parameters Ω) quantifies the number of clusters that need to overlap to yield c. Equilibrium clusters (minimization of Gibbs energy) and shear clusters (minimization of entropy production) differ fundamentally where Ωequil ≥ Ωshear. Only in the vicinity of the glass transition temperature and at high concentration the opposite is the case. Experimental information on Ωequil as a function of φ, the volume fraction of polymer, yields coil-overlap and cross-over concentrations in agreement with the results of scattering studies; analogous information on Ωshear (φ) gives access to cross-over concentrations under shear. Theoretical aspects and questions of practical interest arising from the observed differences between equilibrium and shear clusters are being discussed.
[Display omitted]
•Polymer solutions are inhomogeneous on mesoscopic scales; they form clusters.•Segmental clusters (resulting from chain connectivity) prevail under equilibrium conditions.•Molecular clusters (caused by entropy minimization) form under Newtonian shear.•The polymer concentration in equilibrium clusters is normally much less than in shear clusters.•Opposite behavior: Near glass transition T and at high polymer concentrations.</description><subject>Chemical bonds</subject><subject>Clusters</subject><subject>Coils</subject><subject>Cross-over concentrations</subject><subject>Entropy</subject><subject>Glass transition temperature</subject><subject>Optimization</subject><subject>Overlap concentrations</subject><subject>Polymer clusters</subject><subject>Polymers</subject><subject>Shear</subject><subject>Transition temperatures</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKsfQVjwvDWTbHazgoiU-gcKetBzSLOzmGXbtMmm0G9vyhavXmZg5r03zI-QW6AzoFDed7Ot6w9r9DNGWZoxDkV9RiYgK54zVsM5mVDKWc5lCZfkKoSOUsoEKybk8XO0ZsH1cbBuEx6yxS7a3q68jevM9DEM6EO2TyWGLPyg9n_Ta3LR6j7gzalPyffL4mv-li8_Xt_nz8vccF4NuUbKtNaGyVUrAURdN7rBCgqKhTQtN0IgaGm0xLLipqZtbWqARlRMo2gZn5K7MXfr3S5iGFTnot-kk4oVshQCqoonlRhVxrsQPLZq6-1a-4MCqo6kVKdOpNSRlBpJJd_T6MP0wt6mbTAWNwYb69EMqnH2n4RfWFF1nA</recordid><startdate>20210106</startdate><enddate>20210106</enddate><creator>Wolf, Bernhard A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20210106</creationdate><title>Polymer solutions: Equilibrium clusters versus shear clusters</title><author>Wolf, Bernhard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ae02aaac28bf811599dade7140e48cf3c55e1a8ca8e673c90f9c911d572ae5f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical bonds</topic><topic>Clusters</topic><topic>Coils</topic><topic>Cross-over concentrations</topic><topic>Entropy</topic><topic>Glass transition temperature</topic><topic>Optimization</topic><topic>Overlap concentrations</topic><topic>Polymer clusters</topic><topic>Polymers</topic><topic>Shear</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, Bernhard A.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, Bernhard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer solutions: Equilibrium clusters versus shear clusters</atitle><jtitle>Polymer (Guilford)</jtitle><date>2021-01-06</date><risdate>2021</risdate><volume>212</volume><spage>123149</spage><pages>123149-</pages><artnum>123149</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Polymer solutions are inhomogeneous on mesoscopic scales as a result of chemical bonds linking their monomeric units. This situation leads to polymer clusters within which the polymer concentration ccluster is only a small fraction of the overall concentration c. The ratio c/ ccluster (overlap parameters Ω) quantifies the number of clusters that need to overlap to yield c. Equilibrium clusters (minimization of Gibbs energy) and shear clusters (minimization of entropy production) differ fundamentally where Ωequil ≥ Ωshear. Only in the vicinity of the glass transition temperature and at high concentration the opposite is the case. Experimental information on Ωequil as a function of φ, the volume fraction of polymer, yields coil-overlap and cross-over concentrations in agreement with the results of scattering studies; analogous information on Ωshear (φ) gives access to cross-over concentrations under shear. Theoretical aspects and questions of practical interest arising from the observed differences between equilibrium and shear clusters are being discussed.
[Display omitted]
•Polymer solutions are inhomogeneous on mesoscopic scales; they form clusters.•Segmental clusters (resulting from chain connectivity) prevail under equilibrium conditions.•Molecular clusters (caused by entropy minimization) form under Newtonian shear.•The polymer concentration in equilibrium clusters is normally much less than in shear clusters.•Opposite behavior: Near glass transition T and at high polymer concentrations.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2020.123149</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2021-01, Vol.212, p.123149, Article 123149 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_2486551773 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Chemical bonds Clusters Coils Cross-over concentrations Entropy Glass transition temperature Optimization Overlap concentrations Polymer clusters Polymers Shear Transition temperatures |
title | Polymer solutions: Equilibrium clusters versus shear clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%20solutions:%20Equilibrium%20clusters%20versus%20shear%20clusters&rft.jtitle=Polymer%20(Guilford)&rft.au=Wolf,%20Bernhard%20A.&rft.date=2021-01-06&rft.volume=212&rft.spage=123149&rft.pages=123149-&rft.artnum=123149&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2020.123149&rft_dat=%3Cproquest_cross%3E2486551773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486551773&rft_id=info:pmid/&rft_els_id=S0032386120309745&rfr_iscdi=true |