Ihara’s Lemma for Shimura curves over totally real fields via patching

We prove Ihara’s lemma for the mod l cohomology of Shimura curves, localized at a maximal ideal of the Hecke algebra, under a large image hypothesis on the associated Galois representation. This was proved by Diamond and Taylor, for Shimura curves over Q , under various assumptions on l . Our method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2021-02, Vol.379 (1-2), p.187-234
Hauptverfasser: Manning, Jeffrey, Shotton, Jack
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 1-2
container_start_page 187
container_title Mathematische annalen
container_volume 379
creator Manning, Jeffrey
Shotton, Jack
description We prove Ihara’s lemma for the mod l cohomology of Shimura curves, localized at a maximal ideal of the Hecke algebra, under a large image hypothesis on the associated Galois representation. This was proved by Diamond and Taylor, for Shimura curves over Q , under various assumptions on l . Our method is totally different and can avoid these assumptions, at the cost of imposing the large image hypothesis. It uses the Taylor–Wiles method, as improved by Diamond and Kisin, and the geometry of integral models of Shimura curves at an auxiliary prime.
doi_str_mv 10.1007/s00208-020-02048-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486505342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486505342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9fcd38406915259d205302330ce3f10ee9e1d75abdac2fc060575ce3829b26563</originalsourceid><addsrcrecordid>eNp9ULtOwzAUtRBIlMIPMFliNlzbceKMqAJaqRIDMFuuYzep8ih2Eqkbv8Hv8SW4BImN4Z47nJd0ELqmcEsBsrsAwECSCMdLJJEnaEYTzgiVkJ2iWeQFEZLTc3QRwg4AOICYoeWq1F5_fXwGvLZNo7HrPH4pq2bwGpvBjzbgbrQe912v6_qAvdU1dpWti4DHSuO97k1ZtdtLdOZ0HezV75-jt8eH18WSrJ-fVov7NTE85T3JnSm4TCDNqWAiLxgIDoxzMJY7CtbmlhaZ0JtCG-YMpCAyETnJ8g1LRcrn6GbK3fvufbChV7tu8G2sVCyRqYh5CYsqNqmM70Lw1qm9rxrtD4qCOi6mpsVUBPWzmJLRxCdTiOJ2a_1f9D-ub_kLbbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486505342</pqid></control><display><type>article</type><title>Ihara’s Lemma for Shimura curves over totally real fields via patching</title><source>Springer Nature - Complete Springer Journals</source><creator>Manning, Jeffrey ; Shotton, Jack</creator><creatorcontrib>Manning, Jeffrey ; Shotton, Jack</creatorcontrib><description>We prove Ihara’s lemma for the mod l cohomology of Shimura curves, localized at a maximal ideal of the Hecke algebra, under a large image hypothesis on the associated Galois representation. This was proved by Diamond and Taylor, for Shimura curves over Q , under various assumptions on l . Our method is totally different and can avoid these assumptions, at the cost of imposing the large image hypothesis. It uses the Taylor–Wiles method, as improved by Diamond and Kisin, and the geometry of integral models of Shimura curves at an auxiliary prime.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-020-02048-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Curves ; Diamonds ; Homology ; Hypotheses ; Mathematics ; Mathematics and Statistics ; Patching</subject><ispartof>Mathematische annalen, 2021-02, Vol.379 (1-2), p.187-234</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-9fcd38406915259d205302330ce3f10ee9e1d75abdac2fc060575ce3829b26563</citedby><cites>FETCH-LOGICAL-c363t-9fcd38406915259d205302330ce3f10ee9e1d75abdac2fc060575ce3829b26563</cites><orcidid>0000-0002-3464-8791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-020-02048-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-020-02048-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Manning, Jeffrey</creatorcontrib><creatorcontrib>Shotton, Jack</creatorcontrib><title>Ihara’s Lemma for Shimura curves over totally real fields via patching</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>We prove Ihara’s lemma for the mod l cohomology of Shimura curves, localized at a maximal ideal of the Hecke algebra, under a large image hypothesis on the associated Galois representation. This was proved by Diamond and Taylor, for Shimura curves over Q , under various assumptions on l . Our method is totally different and can avoid these assumptions, at the cost of imposing the large image hypothesis. It uses the Taylor–Wiles method, as improved by Diamond and Kisin, and the geometry of integral models of Shimura curves at an auxiliary prime.</description><subject>Curves</subject><subject>Diamonds</subject><subject>Homology</subject><subject>Hypotheses</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Patching</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9ULtOwzAUtRBIlMIPMFliNlzbceKMqAJaqRIDMFuuYzep8ih2Eqkbv8Hv8SW4BImN4Z47nJd0ELqmcEsBsrsAwECSCMdLJJEnaEYTzgiVkJ2iWeQFEZLTc3QRwg4AOICYoeWq1F5_fXwGvLZNo7HrPH4pq2bwGpvBjzbgbrQe912v6_qAvdU1dpWti4DHSuO97k1ZtdtLdOZ0HezV75-jt8eH18WSrJ-fVov7NTE85T3JnSm4TCDNqWAiLxgIDoxzMJY7CtbmlhaZ0JtCG-YMpCAyETnJ8g1LRcrn6GbK3fvufbChV7tu8G2sVCyRqYh5CYsqNqmM70Lw1qm9rxrtD4qCOi6mpsVUBPWzmJLRxCdTiOJ2a_1f9D-ub_kLbbU</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Manning, Jeffrey</creator><creator>Shotton, Jack</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3464-8791</orcidid></search><sort><creationdate>20210201</creationdate><title>Ihara’s Lemma for Shimura curves over totally real fields via patching</title><author>Manning, Jeffrey ; Shotton, Jack</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9fcd38406915259d205302330ce3f10ee9e1d75abdac2fc060575ce3829b26563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Curves</topic><topic>Diamonds</topic><topic>Homology</topic><topic>Hypotheses</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Patching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manning, Jeffrey</creatorcontrib><creatorcontrib>Shotton, Jack</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manning, Jeffrey</au><au>Shotton, Jack</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ihara’s Lemma for Shimura curves over totally real fields via patching</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>379</volume><issue>1-2</issue><spage>187</spage><epage>234</epage><pages>187-234</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>We prove Ihara’s lemma for the mod l cohomology of Shimura curves, localized at a maximal ideal of the Hecke algebra, under a large image hypothesis on the associated Galois representation. This was proved by Diamond and Taylor, for Shimura curves over Q , under various assumptions on l . Our method is totally different and can avoid these assumptions, at the cost of imposing the large image hypothesis. It uses the Taylor–Wiles method, as improved by Diamond and Kisin, and the geometry of integral models of Shimura curves at an auxiliary prime.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-020-02048-8</doi><tpages>48</tpages><orcidid>https://orcid.org/0000-0002-3464-8791</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2021-02, Vol.379 (1-2), p.187-234
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_2486505342
source Springer Nature - Complete Springer Journals
subjects Curves
Diamonds
Homology
Hypotheses
Mathematics
Mathematics and Statistics
Patching
title Ihara’s Lemma for Shimura curves over totally real fields via patching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ihara%E2%80%99s%20Lemma%20for%20Shimura%20curves%20over%20totally%20real%20fields%20via%20patching&rft.jtitle=Mathematische%20annalen&rft.au=Manning,%20Jeffrey&rft.date=2021-02-01&rft.volume=379&rft.issue=1-2&rft.spage=187&rft.epage=234&rft.pages=187-234&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-020-02048-8&rft_dat=%3Cproquest_cross%3E2486505342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486505342&rft_id=info:pmid/&rfr_iscdi=true