Candidate gene expression and coding sequence variants in Warmblood horses with myofibrillar myopathy

Background Myofibrillar myopathy (MFM) of unknown aetiology has recently been identified in Warmblood (WB) horses. In humans, 16 genes have been implicated in various MFM‐like disorders. Objectives To identify variants in 16 MFM candidate genes and compare allele frequencies of all variants between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Equine veterinary journal 2021-03, Vol.53 (2), p.306-315
Hauptverfasser: Williams, Zoë J., Velez‐Irizarry, Deborah, Petersen, Jessica L., Ochala, Julien, Finno, Carrie J., Valberg, Stephanie J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 315
container_issue 2
container_start_page 306
container_title Equine veterinary journal
container_volume 53
creator Williams, Zoë J.
Velez‐Irizarry, Deborah
Petersen, Jessica L.
Ochala, Julien
Finno, Carrie J.
Valberg, Stephanie J.
description Background Myofibrillar myopathy (MFM) of unknown aetiology has recently been identified in Warmblood (WB) horses. In humans, 16 genes have been implicated in various MFM‐like disorders. Objectives To identify variants in 16 MFM candidate genes and compare allele frequencies of all variants between MFM WB and non‐MFM WB and coding variants with moderate or severe predicted effects in MFM WB with publicly available data of other breeds. To compare differential gene expression and muscle fibre contractile force between MFM and non‐MFM WB. Study design Case‐control. Animals 8 MFM WB, 8 non‐MFM WB, 33 other WB, 32 Thoroughbreds, 80 Quarter Horses and 77 horses of other breeds in public databases. Methods Variants were called within transcripts of 16 candidate genes using gluteal muscle mRNA sequences aligned to EquCab3.0 and allele frequencies compared by Fisher's exact test among MFM WB, non‐MFM WB and public sequences across breeds. Candidate gene differential expression was determined between MFM and non‐MFM WB by fitting a negative binomial generalised log‐linear model per gene (false discovery rate
doi_str_mv 10.1111/evj.13286
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2486495613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407313986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4436-1f873869ee4d53e1c0ade2cbe4cfde5475581754bce6a070154211f7953ec2fe3</originalsourceid><addsrcrecordid>eNp1kU1LJDEQhoO46Phx8A8sAS_uoTXf3XMRZHBdF8GLH8eQTlfPZOhOxqRndP69cUdld8FcKkU9PFTxInREySnN7wxW81PKWaW20IgRwQrOidpGo_yVBVVC7KK9lOaEcM4E20G7uUhelWyEYGJ84xozAJ6CBwwviwgpueBxHmAbGuenOMHTErwFvDLRGT8k7Dx-NLGvuxAaPAsxQcLPbpjhfh1aV0fXdSa-NQszzNYH6FtrugSH73Uf3f-8vJv8Km5ur64nFzeFFYKrgrZVySs1BhCN5EAtMQ0wW4OwbQNSlFJWtJSitqAMKQmVglHaluMMW9YC30fnG-9iWffQWPBDNJ1eRNebuNbBOP3vxLuZnoaVLislKGNZcPIuiCGfnAbdu2QhH-MhLJNmgpSc8nGlMnr8HzoPy-jzeZnKurFUlGfqx4ayMaQUof1chhL9Fp7O4ek_4WX2-9_bf5IfaWXgbAM8uw7WX5v05cPvjfIVM1Wl5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486495613</pqid></control><display><type>article</type><title>Candidate gene expression and coding sequence variants in Warmblood horses with myofibrillar myopathy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Williams, Zoë J. ; Velez‐Irizarry, Deborah ; Petersen, Jessica L. ; Ochala, Julien ; Finno, Carrie J. ; Valberg, Stephanie J.</creator><creatorcontrib>Williams, Zoë J. ; Velez‐Irizarry, Deborah ; Petersen, Jessica L. ; Ochala, Julien ; Finno, Carrie J. ; Valberg, Stephanie J.</creatorcontrib><description>Background Myofibrillar myopathy (MFM) of unknown aetiology has recently been identified in Warmblood (WB) horses. In humans, 16 genes have been implicated in various MFM‐like disorders. Objectives To identify variants in 16 MFM candidate genes and compare allele frequencies of all variants between MFM WB and non‐MFM WB and coding variants with moderate or severe predicted effects in MFM WB with publicly available data of other breeds. To compare differential gene expression and muscle fibre contractile force between MFM and non‐MFM WB. Study design Case‐control. Animals 8 MFM WB, 8 non‐MFM WB, 33 other WB, 32 Thoroughbreds, 80 Quarter Horses and 77 horses of other breeds in public databases. Methods Variants were called within transcripts of 16 candidate genes using gluteal muscle mRNA sequences aligned to EquCab3.0 and allele frequencies compared by Fisher's exact test among MFM WB, non‐MFM WB and public sequences across breeds. Candidate gene differential expression was determined between MFM and non‐MFM WB by fitting a negative binomial generalised log‐linear model per gene (false discovery rate &lt;0.05). The maximal isometric force/cross‐sectional area generated by isolated membrane‐permeabilised muscle fibres was determined. Results None of the 426 variants identified in 16 candidate genes were associated with MFM including 26 missense variants. Breed‐specific differences existed in allele frequencies. Candidate gene differential expression and muscle fibre‐specific force did not differ between MFM WB (143.1 ± 34.7 kPa) and non‐MFM WB (140.2 ± 43.7 kPa) (P = .8). Main limitations RNA‐seq–only assays transcripts expressed in skeletal muscle. Other possible candidate genes were not evaluated. Conclusions Evidence for association of variants with a disease is essential because coding sequence variants are common in the equine genome. Variants identified in MFM candidate genes, including two coding variants offered as commercial MFM equine genetic tests, did not associate with the WB MFM phenotype.</description><identifier>ISSN: 0425-1644</identifier><identifier>ISSN: 2042-3306</identifier><identifier>EISSN: 2042-3306</identifier><identifier>DOI: 10.1111/evj.13286</identifier><identifier>PMID: 32453872</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Case-Control Studies ; contractility ; Female ; Gene Expression ; horse ; Horse Diseases - genetics ; Horses - genetics ; Male ; Muscle, Skeletal ; Myopathies, Structural, Congenital - genetics ; Myopathies, Structural, Congenital - veterinary ; myopathy ; RNAseq ; skeletal muscle</subject><ispartof>Equine veterinary journal, 2021-03, Vol.53 (2), p.306-315</ispartof><rights>2020 EVJ Ltd</rights><rights>2020 EVJ Ltd.</rights><rights>Copyright © 2021 EVJ Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4436-1f873869ee4d53e1c0ade2cbe4cfde5475581754bce6a070154211f7953ec2fe3</citedby><cites>FETCH-LOGICAL-c4436-1f873869ee4d53e1c0ade2cbe4cfde5475581754bce6a070154211f7953ec2fe3</cites><orcidid>0000-0002-2852-2914 ; 0000-0001-5924-0234 ; 0000-0001-5978-7010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fevj.13286$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fevj.13286$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32453872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, Zoë J.</creatorcontrib><creatorcontrib>Velez‐Irizarry, Deborah</creatorcontrib><creatorcontrib>Petersen, Jessica L.</creatorcontrib><creatorcontrib>Ochala, Julien</creatorcontrib><creatorcontrib>Finno, Carrie J.</creatorcontrib><creatorcontrib>Valberg, Stephanie J.</creatorcontrib><title>Candidate gene expression and coding sequence variants in Warmblood horses with myofibrillar myopathy</title><title>Equine veterinary journal</title><addtitle>Equine Vet J</addtitle><description>Background Myofibrillar myopathy (MFM) of unknown aetiology has recently been identified in Warmblood (WB) horses. In humans, 16 genes have been implicated in various MFM‐like disorders. Objectives To identify variants in 16 MFM candidate genes and compare allele frequencies of all variants between MFM WB and non‐MFM WB and coding variants with moderate or severe predicted effects in MFM WB with publicly available data of other breeds. To compare differential gene expression and muscle fibre contractile force between MFM and non‐MFM WB. Study design Case‐control. Animals 8 MFM WB, 8 non‐MFM WB, 33 other WB, 32 Thoroughbreds, 80 Quarter Horses and 77 horses of other breeds in public databases. Methods Variants were called within transcripts of 16 candidate genes using gluteal muscle mRNA sequences aligned to EquCab3.0 and allele frequencies compared by Fisher's exact test among MFM WB, non‐MFM WB and public sequences across breeds. Candidate gene differential expression was determined between MFM and non‐MFM WB by fitting a negative binomial generalised log‐linear model per gene (false discovery rate &lt;0.05). The maximal isometric force/cross‐sectional area generated by isolated membrane‐permeabilised muscle fibres was determined. Results None of the 426 variants identified in 16 candidate genes were associated with MFM including 26 missense variants. Breed‐specific differences existed in allele frequencies. Candidate gene differential expression and muscle fibre‐specific force did not differ between MFM WB (143.1 ± 34.7 kPa) and non‐MFM WB (140.2 ± 43.7 kPa) (P = .8). Main limitations RNA‐seq–only assays transcripts expressed in skeletal muscle. Other possible candidate genes were not evaluated. Conclusions Evidence for association of variants with a disease is essential because coding sequence variants are common in the equine genome. Variants identified in MFM candidate genes, including two coding variants offered as commercial MFM equine genetic tests, did not associate with the WB MFM phenotype.</description><subject>Animals</subject><subject>Case-Control Studies</subject><subject>contractility</subject><subject>Female</subject><subject>Gene Expression</subject><subject>horse</subject><subject>Horse Diseases - genetics</subject><subject>Horses - genetics</subject><subject>Male</subject><subject>Muscle, Skeletal</subject><subject>Myopathies, Structural, Congenital - genetics</subject><subject>Myopathies, Structural, Congenital - veterinary</subject><subject>myopathy</subject><subject>RNAseq</subject><subject>skeletal muscle</subject><issn>0425-1644</issn><issn>2042-3306</issn><issn>2042-3306</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1LJDEQhoO46Phx8A8sAS_uoTXf3XMRZHBdF8GLH8eQTlfPZOhOxqRndP69cUdld8FcKkU9PFTxInREySnN7wxW81PKWaW20IgRwQrOidpGo_yVBVVC7KK9lOaEcM4E20G7uUhelWyEYGJ84xozAJ6CBwwviwgpueBxHmAbGuenOMHTErwFvDLRGT8k7Dx-NLGvuxAaPAsxQcLPbpjhfh1aV0fXdSa-NQszzNYH6FtrugSH73Uf3f-8vJv8Km5ur64nFzeFFYKrgrZVySs1BhCN5EAtMQ0wW4OwbQNSlFJWtJSitqAMKQmVglHaluMMW9YC30fnG-9iWffQWPBDNJ1eRNebuNbBOP3vxLuZnoaVLislKGNZcPIuiCGfnAbdu2QhH-MhLJNmgpSc8nGlMnr8HzoPy-jzeZnKurFUlGfqx4ayMaQUof1chhL9Fp7O4ek_4WX2-9_bf5IfaWXgbAM8uw7WX5v05cPvjfIVM1Wl5g</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Williams, Zoë J.</creator><creator>Velez‐Irizarry, Deborah</creator><creator>Petersen, Jessica L.</creator><creator>Ochala, Julien</creator><creator>Finno, Carrie J.</creator><creator>Valberg, Stephanie J.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2852-2914</orcidid><orcidid>https://orcid.org/0000-0001-5924-0234</orcidid><orcidid>https://orcid.org/0000-0001-5978-7010</orcidid></search><sort><creationdate>202103</creationdate><title>Candidate gene expression and coding sequence variants in Warmblood horses with myofibrillar myopathy</title><author>Williams, Zoë J. ; Velez‐Irizarry, Deborah ; Petersen, Jessica L. ; Ochala, Julien ; Finno, Carrie J. ; Valberg, Stephanie J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4436-1f873869ee4d53e1c0ade2cbe4cfde5475581754bce6a070154211f7953ec2fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Case-Control Studies</topic><topic>contractility</topic><topic>Female</topic><topic>Gene Expression</topic><topic>horse</topic><topic>Horse Diseases - genetics</topic><topic>Horses - genetics</topic><topic>Male</topic><topic>Muscle, Skeletal</topic><topic>Myopathies, Structural, Congenital - genetics</topic><topic>Myopathies, Structural, Congenital - veterinary</topic><topic>myopathy</topic><topic>RNAseq</topic><topic>skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Zoë J.</creatorcontrib><creatorcontrib>Velez‐Irizarry, Deborah</creatorcontrib><creatorcontrib>Petersen, Jessica L.</creatorcontrib><creatorcontrib>Ochala, Julien</creatorcontrib><creatorcontrib>Finno, Carrie J.</creatorcontrib><creatorcontrib>Valberg, Stephanie J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Equine veterinary journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Zoë J.</au><au>Velez‐Irizarry, Deborah</au><au>Petersen, Jessica L.</au><au>Ochala, Julien</au><au>Finno, Carrie J.</au><au>Valberg, Stephanie J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Candidate gene expression and coding sequence variants in Warmblood horses with myofibrillar myopathy</atitle><jtitle>Equine veterinary journal</jtitle><addtitle>Equine Vet J</addtitle><date>2021-03</date><risdate>2021</risdate><volume>53</volume><issue>2</issue><spage>306</spage><epage>315</epage><pages>306-315</pages><issn>0425-1644</issn><issn>2042-3306</issn><eissn>2042-3306</eissn><abstract>Background Myofibrillar myopathy (MFM) of unknown aetiology has recently been identified in Warmblood (WB) horses. In humans, 16 genes have been implicated in various MFM‐like disorders. Objectives To identify variants in 16 MFM candidate genes and compare allele frequencies of all variants between MFM WB and non‐MFM WB and coding variants with moderate or severe predicted effects in MFM WB with publicly available data of other breeds. To compare differential gene expression and muscle fibre contractile force between MFM and non‐MFM WB. Study design Case‐control. Animals 8 MFM WB, 8 non‐MFM WB, 33 other WB, 32 Thoroughbreds, 80 Quarter Horses and 77 horses of other breeds in public databases. Methods Variants were called within transcripts of 16 candidate genes using gluteal muscle mRNA sequences aligned to EquCab3.0 and allele frequencies compared by Fisher's exact test among MFM WB, non‐MFM WB and public sequences across breeds. Candidate gene differential expression was determined between MFM and non‐MFM WB by fitting a negative binomial generalised log‐linear model per gene (false discovery rate &lt;0.05). The maximal isometric force/cross‐sectional area generated by isolated membrane‐permeabilised muscle fibres was determined. Results None of the 426 variants identified in 16 candidate genes were associated with MFM including 26 missense variants. Breed‐specific differences existed in allele frequencies. Candidate gene differential expression and muscle fibre‐specific force did not differ between MFM WB (143.1 ± 34.7 kPa) and non‐MFM WB (140.2 ± 43.7 kPa) (P = .8). Main limitations RNA‐seq–only assays transcripts expressed in skeletal muscle. Other possible candidate genes were not evaluated. Conclusions Evidence for association of variants with a disease is essential because coding sequence variants are common in the equine genome. Variants identified in MFM candidate genes, including two coding variants offered as commercial MFM equine genetic tests, did not associate with the WB MFM phenotype.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32453872</pmid><doi>10.1111/evj.13286</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2852-2914</orcidid><orcidid>https://orcid.org/0000-0001-5924-0234</orcidid><orcidid>https://orcid.org/0000-0001-5978-7010</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0425-1644
ispartof Equine veterinary journal, 2021-03, Vol.53 (2), p.306-315
issn 0425-1644
2042-3306
2042-3306
language eng
recordid cdi_proquest_journals_2486495613
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Case-Control Studies
contractility
Female
Gene Expression
horse
Horse Diseases - genetics
Horses - genetics
Male
Muscle, Skeletal
Myopathies, Structural, Congenital - genetics
Myopathies, Structural, Congenital - veterinary
myopathy
RNAseq
skeletal muscle
title Candidate gene expression and coding sequence variants in Warmblood horses with myofibrillar myopathy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Candidate%20gene%20expression%20and%20coding%20sequence%20variants%20in%20Warmblood%20horses%20with%20myofibrillar%20myopathy&rft.jtitle=Equine%20veterinary%20journal&rft.au=Williams,%20Zo%C3%AB%20J.&rft.date=2021-03&rft.volume=53&rft.issue=2&rft.spage=306&rft.epage=315&rft.pages=306-315&rft.issn=0425-1644&rft.eissn=2042-3306&rft_id=info:doi/10.1111/evj.13286&rft_dat=%3Cproquest_pubme%3E2407313986%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486495613&rft_id=info:pmid/32453872&rfr_iscdi=true