Nonlinear Granger causality graph method for data-driven target attack in power cyber-physical systems

Owing to the deep integration of the information and communication technologies, power cyber-physical systems (CPSs) have become smart but are vulnerable to cyber attacks. To correctly assess the vulnerability of power CPSs and further study feasible countermeasures, we verify that a data-driven tar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2021-02, Vol.43 (3), p.549-566
Hauptverfasser: Li, Qinxue, Xu, Bugong, Li, Shanbin, Liu, Yonggui, Xie, Xuhuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 566
container_issue 3
container_start_page 549
container_title Transactions of the Institute of Measurement and Control
container_volume 43
creator Li, Qinxue
Xu, Bugong
Li, Shanbin
Liu, Yonggui
Xie, Xuhuan
description Owing to the deep integration of the information and communication technologies, power cyber-physical systems (CPSs) have become smart but are vulnerable to cyber attacks. To correctly assess the vulnerability of power CPSs and further study feasible countermeasures, we verify that a data-driven target attack on a nonlinear Granger causality graph (NGCG) can be constructed successfully, even if adversaries cannot acquire the configuration information of the systems. A NGCG is a unified framework for the processing and analysis of nonlinear measurement data or datasets and can be used to evaluate the significance of power nodes or lines. In addition, an algorithm including data-driven parameter estimation, noise removal and data reconstruction based on symplectic geometry is introduced to make the NGCG a parameter-free and noise-tolerant method. In particular, three new indexes on the weight analysis of the NGCG are defined to quantitatively evaluate the significance of power nodes or lines. Finally, several case studies of a nonlinear simulation model and power systems in detail verify the effectiveness and superiority of the proposed data-driven target attack. The results show the proposed target attack can select the key attack targets more accurately and lead to physical system collapse with the least number of attack steps.
doi_str_mv 10.1177/0142331220938200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486433701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0142331220938200</sage_id><sourcerecordid>2486433701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-6794fd72c63934b9b3a2c49746068934f9bd30335efb8ea5540e3f0a76059c043</originalsourceid><addsrcrecordid>eNp1kM1LxDAUxIMouH7cPQY8V1-aNGmOsugqLHrRc3lNk27XbluTrNL_3pYVBMHTg5n5zYMh5IrBDWNK3QITKecsTUHzPAU4IgsmlEqAS31MFrOdzP4pOQthCwBCSLEg7rnv2qaz6OnKY1dbTw3uA7ZNHGntcdjQnY2bvqKu97TCiEnlm0_b0Yi-tpFijGjeadPRof-a6bG0Phk2Y2gMtjSMIdpduCAnDttgL3_uOXl7uH9dPibrl9XT8m6dGA46JlJp4SqVGsk1F6UuOaZGaCUkyHxSnC4rDpxn1pW5xSwTYLkDVBIybUDwc3J96B18_7G3IRbbfu-76WWRilwKzhWwKQWHlPF9CN66YvDNDv1YMCjmNYu_a05IckAC1va39N_8N_jYc_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486433701</pqid></control><display><type>article</type><title>Nonlinear Granger causality graph method for data-driven target attack in power cyber-physical systems</title><source>SAGE Complete A-Z List</source><creator>Li, Qinxue ; Xu, Bugong ; Li, Shanbin ; Liu, Yonggui ; Xie, Xuhuan</creator><creatorcontrib>Li, Qinxue ; Xu, Bugong ; Li, Shanbin ; Liu, Yonggui ; Xie, Xuhuan</creatorcontrib><description>Owing to the deep integration of the information and communication technologies, power cyber-physical systems (CPSs) have become smart but are vulnerable to cyber attacks. To correctly assess the vulnerability of power CPSs and further study feasible countermeasures, we verify that a data-driven target attack on a nonlinear Granger causality graph (NGCG) can be constructed successfully, even if adversaries cannot acquire the configuration information of the systems. A NGCG is a unified framework for the processing and analysis of nonlinear measurement data or datasets and can be used to evaluate the significance of power nodes or lines. In addition, an algorithm including data-driven parameter estimation, noise removal and data reconstruction based on symplectic geometry is introduced to make the NGCG a parameter-free and noise-tolerant method. In particular, three new indexes on the weight analysis of the NGCG are defined to quantitatively evaluate the significance of power nodes or lines. Finally, several case studies of a nonlinear simulation model and power systems in detail verify the effectiveness and superiority of the proposed data-driven target attack. The results show the proposed target attack can select the key attack targets more accurately and lead to physical system collapse with the least number of attack steps.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/0142331220938200</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Causality ; Cyber-physical systems ; Cybersecurity ; Evaluation ; Nodes ; Nonlinear analysis ; Parameter estimation ; System effectiveness ; Weight analysis</subject><ispartof>Transactions of the Institute of Measurement and Control, 2021-02, Vol.43 (3), p.549-566</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-6794fd72c63934b9b3a2c49746068934f9bd30335efb8ea5540e3f0a76059c043</citedby><cites>FETCH-LOGICAL-c309t-6794fd72c63934b9b3a2c49746068934f9bd30335efb8ea5540e3f0a76059c043</cites><orcidid>0000-0001-8791-4056 ; 0000-0003-4989-7392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0142331220938200$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0142331220938200$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Li, Qinxue</creatorcontrib><creatorcontrib>Xu, Bugong</creatorcontrib><creatorcontrib>Li, Shanbin</creatorcontrib><creatorcontrib>Liu, Yonggui</creatorcontrib><creatorcontrib>Xie, Xuhuan</creatorcontrib><title>Nonlinear Granger causality graph method for data-driven target attack in power cyber-physical systems</title><title>Transactions of the Institute of Measurement and Control</title><description>Owing to the deep integration of the information and communication technologies, power cyber-physical systems (CPSs) have become smart but are vulnerable to cyber attacks. To correctly assess the vulnerability of power CPSs and further study feasible countermeasures, we verify that a data-driven target attack on a nonlinear Granger causality graph (NGCG) can be constructed successfully, even if adversaries cannot acquire the configuration information of the systems. A NGCG is a unified framework for the processing and analysis of nonlinear measurement data or datasets and can be used to evaluate the significance of power nodes or lines. In addition, an algorithm including data-driven parameter estimation, noise removal and data reconstruction based on symplectic geometry is introduced to make the NGCG a parameter-free and noise-tolerant method. In particular, three new indexes on the weight analysis of the NGCG are defined to quantitatively evaluate the significance of power nodes or lines. Finally, several case studies of a nonlinear simulation model and power systems in detail verify the effectiveness and superiority of the proposed data-driven target attack. The results show the proposed target attack can select the key attack targets more accurately and lead to physical system collapse with the least number of attack steps.</description><subject>Algorithms</subject><subject>Causality</subject><subject>Cyber-physical systems</subject><subject>Cybersecurity</subject><subject>Evaluation</subject><subject>Nodes</subject><subject>Nonlinear analysis</subject><subject>Parameter estimation</subject><subject>System effectiveness</subject><subject>Weight analysis</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAUxIMouH7cPQY8V1-aNGmOsugqLHrRc3lNk27XbluTrNL_3pYVBMHTg5n5zYMh5IrBDWNK3QITKecsTUHzPAU4IgsmlEqAS31MFrOdzP4pOQthCwBCSLEg7rnv2qaz6OnKY1dbTw3uA7ZNHGntcdjQnY2bvqKu97TCiEnlm0_b0Yi-tpFijGjeadPRof-a6bG0Phk2Y2gMtjSMIdpduCAnDttgL3_uOXl7uH9dPibrl9XT8m6dGA46JlJp4SqVGsk1F6UuOaZGaCUkyHxSnC4rDpxn1pW5xSwTYLkDVBIybUDwc3J96B18_7G3IRbbfu-76WWRilwKzhWwKQWHlPF9CN66YvDNDv1YMCjmNYu_a05IckAC1va39N_8N_jYc_E</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Li, Qinxue</creator><creator>Xu, Bugong</creator><creator>Li, Shanbin</creator><creator>Liu, Yonggui</creator><creator>Xie, Xuhuan</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8791-4056</orcidid><orcidid>https://orcid.org/0000-0003-4989-7392</orcidid></search><sort><creationdate>202102</creationdate><title>Nonlinear Granger causality graph method for data-driven target attack in power cyber-physical systems</title><author>Li, Qinxue ; Xu, Bugong ; Li, Shanbin ; Liu, Yonggui ; Xie, Xuhuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-6794fd72c63934b9b3a2c49746068934f9bd30335efb8ea5540e3f0a76059c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Causality</topic><topic>Cyber-physical systems</topic><topic>Cybersecurity</topic><topic>Evaluation</topic><topic>Nodes</topic><topic>Nonlinear analysis</topic><topic>Parameter estimation</topic><topic>System effectiveness</topic><topic>Weight analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qinxue</creatorcontrib><creatorcontrib>Xu, Bugong</creatorcontrib><creatorcontrib>Li, Shanbin</creatorcontrib><creatorcontrib>Liu, Yonggui</creatorcontrib><creatorcontrib>Xie, Xuhuan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qinxue</au><au>Xu, Bugong</au><au>Li, Shanbin</au><au>Liu, Yonggui</au><au>Xie, Xuhuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Granger causality graph method for data-driven target attack in power cyber-physical systems</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2021-02</date><risdate>2021</risdate><volume>43</volume><issue>3</issue><spage>549</spage><epage>566</epage><pages>549-566</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>Owing to the deep integration of the information and communication technologies, power cyber-physical systems (CPSs) have become smart but are vulnerable to cyber attacks. To correctly assess the vulnerability of power CPSs and further study feasible countermeasures, we verify that a data-driven target attack on a nonlinear Granger causality graph (NGCG) can be constructed successfully, even if adversaries cannot acquire the configuration information of the systems. A NGCG is a unified framework for the processing and analysis of nonlinear measurement data or datasets and can be used to evaluate the significance of power nodes or lines. In addition, an algorithm including data-driven parameter estimation, noise removal and data reconstruction based on symplectic geometry is introduced to make the NGCG a parameter-free and noise-tolerant method. In particular, three new indexes on the weight analysis of the NGCG are defined to quantitatively evaluate the significance of power nodes or lines. Finally, several case studies of a nonlinear simulation model and power systems in detail verify the effectiveness and superiority of the proposed data-driven target attack. The results show the proposed target attack can select the key attack targets more accurately and lead to physical system collapse with the least number of attack steps.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0142331220938200</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8791-4056</orcidid><orcidid>https://orcid.org/0000-0003-4989-7392</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-3312
ispartof Transactions of the Institute of Measurement and Control, 2021-02, Vol.43 (3), p.549-566
issn 0142-3312
1477-0369
language eng
recordid cdi_proquest_journals_2486433701
source SAGE Complete A-Z List
subjects Algorithms
Causality
Cyber-physical systems
Cybersecurity
Evaluation
Nodes
Nonlinear analysis
Parameter estimation
System effectiveness
Weight analysis
title Nonlinear Granger causality graph method for data-driven target attack in power cyber-physical systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Granger%20causality%20graph%20method%20for%20data-driven%20target%20attack%20in%20power%20cyber-physical%20systems&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Li,%20Qinxue&rft.date=2021-02&rft.volume=43&rft.issue=3&rft.spage=549&rft.epage=566&rft.pages=549-566&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/0142331220938200&rft_dat=%3Cproquest_cross%3E2486433701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486433701&rft_id=info:pmid/&rft_sage_id=10.1177_0142331220938200&rfr_iscdi=true