Fatigue damage detection and growth monitoring for composite structure using coda wave interferometry

Summary This paper presents the development of a fatigue damage detection and growth monitoring technique based on coda wave interferometry (CWI) for composite structures. The time domain distortion (TD) component of coda waves, which is typically ignored as noise in the literature, is used and expe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural control and health monitoring 2021-03, Vol.28 (3), p.n/a
Hauptverfasser: Lim, Hyung Jin, Lee, Hyunseong, Skinner, Travis, Chattopadhyay, Aditi, Hall, Asha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Structural control and health monitoring
container_volume 28
creator Lim, Hyung Jin
Lee, Hyunseong
Skinner, Travis
Chattopadhyay, Aditi
Hall, Asha
description Summary This paper presents the development of a fatigue damage detection and growth monitoring technique based on coda wave interferometry (CWI) for composite structures. The time domain distortion (TD) component of coda waves, which is typically ignored as noise in the literature, is used and experimentally validated. First, a widely used signal processing method for CWI called the stretching method is applied, and TD component is extracted in the time domain. Next, threshold values are statistically estimated using noise levels of the signal and compared with the amplitude of TD component for detecting early‐stage fatigue damage. A damage index (DI) is then obtained from TD component and used to monitor fatigue damage growth. The experimental results of the damage detection and growth monitoring are validated through visual inspection during the fatigue test. Finally, the developed technique's performance is evaluated by comparing it to conventional ultrasonic and CWI‐based composite fatigue damage assessment methods. The uniqueness of this study lies in (1) detection and growth monitoring of the early‐stage composite fatigue damage, (2) extraction and use of TD component of CWI and investigation of the correlation with the damage existence and growth, and (3) experimental validation and performance examination by comparing with the conventional ultrasonic and CWI‐based composite fatigue damage assessment methods.
doi_str_mv 10.1002/stc.2689
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486428864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486428864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3809-ef3089022ff842ca07ebf8bf25d76298c1252bbff4e2952d220357245b24bf253</originalsourceid><addsrcrecordid>eNp10FFLwzAQB_AgCs4p-BECvvjSmV6bLn2U4aYw8MH5HNL0UjPWZiapY9_e1olvvtwd3I87-BNym7JZyhg8hKhnUIjyjExSnvMEoMjO_2bOL8lVCNtBFiD4hOBSRdv0SGvVqmZoGFFH6zqqupo23h3iB21dZ6PztmuocZ5q1-5dsBFpiL7XsfdI-zButasVPagvpLaL6A1612L0x2tyYdQu4M1vn5L35dNm8ZysX1cvi8d1ojPBygRNxkTJAIwROWjF5lgZURng9byAUugUOFSVMTlCyaEGYBmfQ84ryEeVTcnd6e7eu88eQ5Rb1_tueCkhF0UOYiiDuj8p7V0IHo3ce9sqf5Qpk2OIcghRjiEONDnRg93h8V8n3zaLH_8Ns990fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486428864</pqid></control><display><type>article</type><title>Fatigue damage detection and growth monitoring for composite structure using coda wave interferometry</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lim, Hyung Jin ; Lee, Hyunseong ; Skinner, Travis ; Chattopadhyay, Aditi ; Hall, Asha</creator><creatorcontrib>Lim, Hyung Jin ; Lee, Hyunseong ; Skinner, Travis ; Chattopadhyay, Aditi ; Hall, Asha</creatorcontrib><description>Summary This paper presents the development of a fatigue damage detection and growth monitoring technique based on coda wave interferometry (CWI) for composite structures. The time domain distortion (TD) component of coda waves, which is typically ignored as noise in the literature, is used and experimentally validated. First, a widely used signal processing method for CWI called the stretching method is applied, and TD component is extracted in the time domain. Next, threshold values are statistically estimated using noise levels of the signal and compared with the amplitude of TD component for detecting early‐stage fatigue damage. A damage index (DI) is then obtained from TD component and used to monitor fatigue damage growth. The experimental results of the damage detection and growth monitoring are validated through visual inspection during the fatigue test. Finally, the developed technique's performance is evaluated by comparing it to conventional ultrasonic and CWI‐based composite fatigue damage assessment methods. The uniqueness of this study lies in (1) detection and growth monitoring of the early‐stage composite fatigue damage, (2) extraction and use of TD component of CWI and investigation of the correlation with the damage existence and growth, and (3) experimental validation and performance examination by comparing with the conventional ultrasonic and CWI‐based composite fatigue damage assessment methods.</description><identifier>ISSN: 1545-2255</identifier><identifier>EISSN: 1545-2263</identifier><identifier>DOI: 10.1002/stc.2689</identifier><language>eng</language><publisher>Pavia: Wiley Subscription Services, Inc</publisher><subject>coda wave interferometry ; Composite structures ; composites ; Damage assessment ; Damage detection ; fatigue damage assessment ; Fatigue failure ; Fatigue tests ; Information processing ; Inspection ; Interferometry ; Monitoring ; Noise levels ; Performance evaluation ; PZT transducers ; Signal processing ; structural health monitoring ; Time domain analysis ; ultrasonic guided waves</subject><ispartof>Structural control and health monitoring, 2021-03, Vol.28 (3), p.n/a</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3809-ef3089022ff842ca07ebf8bf25d76298c1252bbff4e2952d220357245b24bf253</citedby><cites>FETCH-LOGICAL-c3809-ef3089022ff842ca07ebf8bf25d76298c1252bbff4e2952d220357245b24bf253</cites><orcidid>0000-0001-9728-8191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fstc.2689$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fstc.2689$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Lim, Hyung Jin</creatorcontrib><creatorcontrib>Lee, Hyunseong</creatorcontrib><creatorcontrib>Skinner, Travis</creatorcontrib><creatorcontrib>Chattopadhyay, Aditi</creatorcontrib><creatorcontrib>Hall, Asha</creatorcontrib><title>Fatigue damage detection and growth monitoring for composite structure using coda wave interferometry</title><title>Structural control and health monitoring</title><description>Summary This paper presents the development of a fatigue damage detection and growth monitoring technique based on coda wave interferometry (CWI) for composite structures. The time domain distortion (TD) component of coda waves, which is typically ignored as noise in the literature, is used and experimentally validated. First, a widely used signal processing method for CWI called the stretching method is applied, and TD component is extracted in the time domain. Next, threshold values are statistically estimated using noise levels of the signal and compared with the amplitude of TD component for detecting early‐stage fatigue damage. A damage index (DI) is then obtained from TD component and used to monitor fatigue damage growth. The experimental results of the damage detection and growth monitoring are validated through visual inspection during the fatigue test. Finally, the developed technique's performance is evaluated by comparing it to conventional ultrasonic and CWI‐based composite fatigue damage assessment methods. The uniqueness of this study lies in (1) detection and growth monitoring of the early‐stage composite fatigue damage, (2) extraction and use of TD component of CWI and investigation of the correlation with the damage existence and growth, and (3) experimental validation and performance examination by comparing with the conventional ultrasonic and CWI‐based composite fatigue damage assessment methods.</description><subject>coda wave interferometry</subject><subject>Composite structures</subject><subject>composites</subject><subject>Damage assessment</subject><subject>Damage detection</subject><subject>fatigue damage assessment</subject><subject>Fatigue failure</subject><subject>Fatigue tests</subject><subject>Information processing</subject><subject>Inspection</subject><subject>Interferometry</subject><subject>Monitoring</subject><subject>Noise levels</subject><subject>Performance evaluation</subject><subject>PZT transducers</subject><subject>Signal processing</subject><subject>structural health monitoring</subject><subject>Time domain analysis</subject><subject>ultrasonic guided waves</subject><issn>1545-2255</issn><issn>1545-2263</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10FFLwzAQB_AgCs4p-BECvvjSmV6bLn2U4aYw8MH5HNL0UjPWZiapY9_e1olvvtwd3I87-BNym7JZyhg8hKhnUIjyjExSnvMEoMjO_2bOL8lVCNtBFiD4hOBSRdv0SGvVqmZoGFFH6zqqupo23h3iB21dZ6PztmuocZ5q1-5dsBFpiL7XsfdI-zButasVPagvpLaL6A1612L0x2tyYdQu4M1vn5L35dNm8ZysX1cvi8d1ojPBygRNxkTJAIwROWjF5lgZURng9byAUugUOFSVMTlCyaEGYBmfQ84ryEeVTcnd6e7eu88eQ5Rb1_tueCkhF0UOYiiDuj8p7V0IHo3ce9sqf5Qpk2OIcghRjiEONDnRg93h8V8n3zaLH_8Ns990fw</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Lim, Hyung Jin</creator><creator>Lee, Hyunseong</creator><creator>Skinner, Travis</creator><creator>Chattopadhyay, Aditi</creator><creator>Hall, Asha</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9728-8191</orcidid></search><sort><creationdate>202103</creationdate><title>Fatigue damage detection and growth monitoring for composite structure using coda wave interferometry</title><author>Lim, Hyung Jin ; Lee, Hyunseong ; Skinner, Travis ; Chattopadhyay, Aditi ; Hall, Asha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3809-ef3089022ff842ca07ebf8bf25d76298c1252bbff4e2952d220357245b24bf253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>coda wave interferometry</topic><topic>Composite structures</topic><topic>composites</topic><topic>Damage assessment</topic><topic>Damage detection</topic><topic>fatigue damage assessment</topic><topic>Fatigue failure</topic><topic>Fatigue tests</topic><topic>Information processing</topic><topic>Inspection</topic><topic>Interferometry</topic><topic>Monitoring</topic><topic>Noise levels</topic><topic>Performance evaluation</topic><topic>PZT transducers</topic><topic>Signal processing</topic><topic>structural health monitoring</topic><topic>Time domain analysis</topic><topic>ultrasonic guided waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Hyung Jin</creatorcontrib><creatorcontrib>Lee, Hyunseong</creatorcontrib><creatorcontrib>Skinner, Travis</creatorcontrib><creatorcontrib>Chattopadhyay, Aditi</creatorcontrib><creatorcontrib>Hall, Asha</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Structural control and health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Hyung Jin</au><au>Lee, Hyunseong</au><au>Skinner, Travis</au><au>Chattopadhyay, Aditi</au><au>Hall, Asha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue damage detection and growth monitoring for composite structure using coda wave interferometry</atitle><jtitle>Structural control and health monitoring</jtitle><date>2021-03</date><risdate>2021</risdate><volume>28</volume><issue>3</issue><epage>n/a</epage><issn>1545-2255</issn><eissn>1545-2263</eissn><abstract>Summary This paper presents the development of a fatigue damage detection and growth monitoring technique based on coda wave interferometry (CWI) for composite structures. The time domain distortion (TD) component of coda waves, which is typically ignored as noise in the literature, is used and experimentally validated. First, a widely used signal processing method for CWI called the stretching method is applied, and TD component is extracted in the time domain. Next, threshold values are statistically estimated using noise levels of the signal and compared with the amplitude of TD component for detecting early‐stage fatigue damage. A damage index (DI) is then obtained from TD component and used to monitor fatigue damage growth. The experimental results of the damage detection and growth monitoring are validated through visual inspection during the fatigue test. Finally, the developed technique's performance is evaluated by comparing it to conventional ultrasonic and CWI‐based composite fatigue damage assessment methods. The uniqueness of this study lies in (1) detection and growth monitoring of the early‐stage composite fatigue damage, (2) extraction and use of TD component of CWI and investigation of the correlation with the damage existence and growth, and (3) experimental validation and performance examination by comparing with the conventional ultrasonic and CWI‐based composite fatigue damage assessment methods.</abstract><cop>Pavia</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/stc.2689</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9728-8191</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-2255
ispartof Structural control and health monitoring, 2021-03, Vol.28 (3), p.n/a
issn 1545-2255
1545-2263
language eng
recordid cdi_proquest_journals_2486428864
source Wiley Online Library Journals Frontfile Complete
subjects coda wave interferometry
Composite structures
composites
Damage assessment
Damage detection
fatigue damage assessment
Fatigue failure
Fatigue tests
Information processing
Inspection
Interferometry
Monitoring
Noise levels
Performance evaluation
PZT transducers
Signal processing
structural health monitoring
Time domain analysis
ultrasonic guided waves
title Fatigue damage detection and growth monitoring for composite structure using coda wave interferometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20damage%20detection%20and%20growth%20monitoring%20for%20composite%20structure%20using%20coda%20wave%20interferometry&rft.jtitle=Structural%20control%20and%20health%20monitoring&rft.au=Lim,%20Hyung%20Jin&rft.date=2021-03&rft.volume=28&rft.issue=3&rft.epage=n/a&rft.issn=1545-2255&rft.eissn=1545-2263&rft_id=info:doi/10.1002/stc.2689&rft_dat=%3Cproquest_cross%3E2486428864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486428864&rft_id=info:pmid/&rfr_iscdi=true