Connectivity for quantum graphs

In Quantum Information Theory there is a construction for quantum channels, appropriately called a quantum graph, that generalizes the confusability graph construction for classical channels in classical information theory. In this paper a definition of connectedness for quantum graphs is provided,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2021-01, Vol.608, p.37-53
Hauptverfasser: Chávez-Domínguez, Javier Alejandro, Swift, Andrew T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue
container_start_page 37
container_title Linear algebra and its applications
container_volume 608
creator Chávez-Domínguez, Javier Alejandro
Swift, Andrew T.
description In Quantum Information Theory there is a construction for quantum channels, appropriately called a quantum graph, that generalizes the confusability graph construction for classical channels in classical information theory. In this paper a definition of connectedness for quantum graphs is provided, which generalizes the classical definition. It is shown that several examples of well-known quantum graphs (quantum Hamming cubes and quantum expanders) are connected. A quantum version of a particular case of the classical tree-packing theorem from Graph Theory is also proved. Generalizations for the related notions of k-connectedness and of orthogonal representation are also proposed for quantum graphs, and it is shown that orthogonal representations have the same implications for connectedness as they do in the classical case.
doi_str_mv 10.1016/j.laa.2020.08.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486190664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379520303931</els_id><sourcerecordid>2486190664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8d70d8f18f2b9a2e92ae2118a23ff3d1fa36d0739566d271a1e605d025adbe163</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWEd_gCsLrlvfS9o0xZUUv2DAja5Dpkk0ZabtJO3A_Hsz1LWrs7nnfVxCbhFyBOQPXb5VKqdAIQeRR5yRBEXFMhQlPycJAC0yVtXlJbkKoQOAogKakLtm6HvTTu7gpmNqB5_uZ9VP8y799mr8CdfkwqptMDd_XJGvl-fP5i1bf7y-N0_rrGVcTJnQFWhhUVi6qRU1NVWGIgpFmbVMo1WMa6hYXXKuaYUKDYdSAy2V3hjkbEXul7mjH_azCZPshtn3caWkheBYA-dFTOGSav0QgjdWjt7tlD9KBHnqQXYy9iBPPUgQMiI6j4tj4vkHZ7wMrTN9a7Tz8XGpB_eP_QulbWOb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486190664</pqid></control><display><type>article</type><title>Connectivity for quantum graphs</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chávez-Domínguez, Javier Alejandro ; Swift, Andrew T.</creator><creatorcontrib>Chávez-Domínguez, Javier Alejandro ; Swift, Andrew T.</creatorcontrib><description>In Quantum Information Theory there is a construction for quantum channels, appropriately called a quantum graph, that generalizes the confusability graph construction for classical channels in classical information theory. In this paper a definition of connectedness for quantum graphs is provided, which generalizes the classical definition. It is shown that several examples of well-known quantum graphs (quantum Hamming cubes and quantum expanders) are connected. A quantum version of a particular case of the classical tree-packing theorem from Graph Theory is also proved. Generalizations for the related notions of k-connectedness and of orthogonal representation are also proposed for quantum graphs, and it is shown that orthogonal representations have the same implications for connectedness as they do in the classical case.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.08.020</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Channels ; Cubes ; Expanders ; Graph theory ; Graphs ; Information theory ; Linear algebra ; Non-commutative graphs ; Operator systems ; Orthogonal representations ; Quantum expanders ; Quantum graphs ; Quantum phenomena ; Representations</subject><ispartof>Linear algebra and its applications, 2021-01, Vol.608, p.37-53</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jan 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8d70d8f18f2b9a2e92ae2118a23ff3d1fa36d0739566d271a1e605d025adbe163</citedby><cites>FETCH-LOGICAL-c368t-8d70d8f18f2b9a2e92ae2118a23ff3d1fa36d0739566d271a1e605d025adbe163</cites><orcidid>0000-0001-5061-3612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2020.08.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Chávez-Domínguez, Javier Alejandro</creatorcontrib><creatorcontrib>Swift, Andrew T.</creatorcontrib><title>Connectivity for quantum graphs</title><title>Linear algebra and its applications</title><description>In Quantum Information Theory there is a construction for quantum channels, appropriately called a quantum graph, that generalizes the confusability graph construction for classical channels in classical information theory. In this paper a definition of connectedness for quantum graphs is provided, which generalizes the classical definition. It is shown that several examples of well-known quantum graphs (quantum Hamming cubes and quantum expanders) are connected. A quantum version of a particular case of the classical tree-packing theorem from Graph Theory is also proved. Generalizations for the related notions of k-connectedness and of orthogonal representation are also proposed for quantum graphs, and it is shown that orthogonal representations have the same implications for connectedness as they do in the classical case.</description><subject>Channels</subject><subject>Cubes</subject><subject>Expanders</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information theory</subject><subject>Linear algebra</subject><subject>Non-commutative graphs</subject><subject>Operator systems</subject><subject>Orthogonal representations</subject><subject>Quantum expanders</subject><subject>Quantum graphs</subject><subject>Quantum phenomena</subject><subject>Representations</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoWEd_gCsLrlvfS9o0xZUUv2DAja5Dpkk0ZabtJO3A_Hsz1LWrs7nnfVxCbhFyBOQPXb5VKqdAIQeRR5yRBEXFMhQlPycJAC0yVtXlJbkKoQOAogKakLtm6HvTTu7gpmNqB5_uZ9VP8y799mr8CdfkwqptMDd_XJGvl-fP5i1bf7y-N0_rrGVcTJnQFWhhUVi6qRU1NVWGIgpFmbVMo1WMa6hYXXKuaYUKDYdSAy2V3hjkbEXul7mjH_azCZPshtn3caWkheBYA-dFTOGSav0QgjdWjt7tlD9KBHnqQXYy9iBPPUgQMiI6j4tj4vkHZ7wMrTN9a7Tz8XGpB_eP_QulbWOb</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Chávez-Domínguez, Javier Alejandro</creator><creator>Swift, Andrew T.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5061-3612</orcidid></search><sort><creationdate>20210101</creationdate><title>Connectivity for quantum graphs</title><author>Chávez-Domínguez, Javier Alejandro ; Swift, Andrew T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8d70d8f18f2b9a2e92ae2118a23ff3d1fa36d0739566d271a1e605d025adbe163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Channels</topic><topic>Cubes</topic><topic>Expanders</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information theory</topic><topic>Linear algebra</topic><topic>Non-commutative graphs</topic><topic>Operator systems</topic><topic>Orthogonal representations</topic><topic>Quantum expanders</topic><topic>Quantum graphs</topic><topic>Quantum phenomena</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chávez-Domínguez, Javier Alejandro</creatorcontrib><creatorcontrib>Swift, Andrew T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chávez-Domínguez, Javier Alejandro</au><au>Swift, Andrew T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connectivity for quantum graphs</atitle><jtitle>Linear algebra and its applications</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>608</volume><spage>37</spage><epage>53</epage><pages>37-53</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>In Quantum Information Theory there is a construction for quantum channels, appropriately called a quantum graph, that generalizes the confusability graph construction for classical channels in classical information theory. In this paper a definition of connectedness for quantum graphs is provided, which generalizes the classical definition. It is shown that several examples of well-known quantum graphs (quantum Hamming cubes and quantum expanders) are connected. A quantum version of a particular case of the classical tree-packing theorem from Graph Theory is also proved. Generalizations for the related notions of k-connectedness and of orthogonal representation are also proposed for quantum graphs, and it is shown that orthogonal representations have the same implications for connectedness as they do in the classical case.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.08.020</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5061-3612</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2021-01, Vol.608, p.37-53
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2486190664
source Access via ScienceDirect (Elsevier)
subjects Channels
Cubes
Expanders
Graph theory
Graphs
Information theory
Linear algebra
Non-commutative graphs
Operator systems
Orthogonal representations
Quantum expanders
Quantum graphs
Quantum phenomena
Representations
title Connectivity for quantum graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connectivity%20for%20quantum%20graphs&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Ch%C3%A1vez-Dom%C3%ADnguez,%20Javier%20Alejandro&rft.date=2021-01-01&rft.volume=608&rft.spage=37&rft.epage=53&rft.pages=37-53&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.08.020&rft_dat=%3Cproquest_cross%3E2486190664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486190664&rft_id=info:pmid/&rft_els_id=S0024379520303931&rfr_iscdi=true