Fractal Solitons, Arbitrary Function Solutions, Exact Periodic Wave and Breathers for a Nonlinear Partial Differential Equation by Using Bilinear Neural Network Method

This paper extends a method, called bilinear neural network method (BNNM), to solve exact solutions to nonlinear partial differential equation. New, test functions are constructed by using this method. These test functions are composed of specific activation functions of single-layer model, specific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems science and complexity 2021-02, Vol.34 (1), p.122-139
Hauptverfasser: Zhang, Runfa, Bilige, Sudao, Chaolu, Temuer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue 1
container_start_page 122
container_title Journal of systems science and complexity
container_volume 34
creator Zhang, Runfa
Bilige, Sudao
Chaolu, Temuer
description This paper extends a method, called bilinear neural network method (BNNM), to solve exact solutions to nonlinear partial differential equation. New, test functions are constructed by using this method. These test functions are composed of specific activation functions of single-layer model, specific activation functions of “2-2” model and arbitrary functions of “2-2-3” model. By means of the BNNM, nineteen sets of exact analytical solutions and twenty-four arbitrary function solutions of the dimensionally reduced p -gBKP equation are obtained via symbolic computation with the help of Maple. The fractal solitons waves are obtained by choosing appropriate values and the self-similar characteristics of these waves are observed by reducing the observation range and amplifying the partial picture. By giving a specific activation function in the single layer neural network model, exact periodic waves and breathers are obtained. Via various three-dimensional plots, contour plots and density plots, the evolution characteristic of these waves are exhibited.
doi_str_mv 10.1007/s11424-020-9392-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486174595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486174595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5d9349b9e23cbad3cca0c9e93fc51238786b82b9b799620faf53b4d644b9aab93</originalsourceid><addsrcrecordid>eNp1kclKBDEQhhtRcH0AbwGvtmbrJUeXGRV0FFQ8hiSd1uiYaCXt8kS-pmlH8OSpqqjv_wvqL4ptgvcIxs1-JIRTXmKKS8EELaulYo1UlSgbXDfLucdYlDWhfLVYj_ERY1YL3K4VX1NQJqk5ug5zl4KPu-gAtEug4BNNB2-SC35cDmOTt5OPzKMrCy50zqA79WaR8h06BKvSg4WI-gBIoVnwc-etAnSlILl84dj1vQXrf4bJ66B-rPUnuo3O36ND98vP7ACZmNn0HuAJXdj0ELrNYqVX82i3futGcTud3BydlueXJ2dHB-elYaROZdUJxoUWljKjVceMUdgIK1hvKkJZ27S1bqkWuhGiprhXfcU072rOtVBKC7ZR7Cx8XyC8DjYm-RgG8PmkpLytScMrUWWKLCgDIUawvXwB95xfJgmWYx5ykYfMecgxDzlq6EITM-vvLfw5_y_6BnJtkHE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486174595</pqid></control><display><type>article</type><title>Fractal Solitons, Arbitrary Function Solutions, Exact Periodic Wave and Breathers for a Nonlinear Partial Differential Equation by Using Bilinear Neural Network Method</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Runfa ; Bilige, Sudao ; Chaolu, Temuer</creator><creatorcontrib>Zhang, Runfa ; Bilige, Sudao ; Chaolu, Temuer</creatorcontrib><description>This paper extends a method, called bilinear neural network method (BNNM), to solve exact solutions to nonlinear partial differential equation. New, test functions are constructed by using this method. These test functions are composed of specific activation functions of single-layer model, specific activation functions of “2-2” model and arbitrary functions of “2-2-3” model. By means of the BNNM, nineteen sets of exact analytical solutions and twenty-four arbitrary function solutions of the dimensionally reduced p -gBKP equation are obtained via symbolic computation with the help of Maple. The fractal solitons waves are obtained by choosing appropriate values and the self-similar characteristics of these waves are observed by reducing the observation range and amplifying the partial picture. By giving a specific activation function in the single layer neural network model, exact periodic waves and breathers are obtained. Via various three-dimensional plots, contour plots and density plots, the evolution characteristic of these waves are exhibited.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-020-9392-5</identifier><language>eng</language><publisher>Beijing: Academy of Mathematics and Systems Science, Chinese Academy of Sciences</publisher><subject>Breathers ; Complex Systems ; Control ; Exact solutions ; Fractals ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Neural networks ; Nonlinear differential equations ; Operations Research/Decision Theory ; Partial differential equations ; Self-similarity ; Solitary waves ; Statistics ; Systems Theory ; Three dimensional models</subject><ispartof>Journal of systems science and complexity, 2021-02, Vol.34 (1), p.122-139</ispartof><rights>The Editorial Office of JSSC &amp; Springer-Verlag GmbH Germany 2020</rights><rights>The Editorial Office of JSSC &amp; Springer-Verlag GmbH Germany 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5d9349b9e23cbad3cca0c9e93fc51238786b82b9b799620faf53b4d644b9aab93</citedby><cites>FETCH-LOGICAL-c316t-5d9349b9e23cbad3cca0c9e93fc51238786b82b9b799620faf53b4d644b9aab93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11424-020-9392-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11424-020-9392-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Runfa</creatorcontrib><creatorcontrib>Bilige, Sudao</creatorcontrib><creatorcontrib>Chaolu, Temuer</creatorcontrib><title>Fractal Solitons, Arbitrary Function Solutions, Exact Periodic Wave and Breathers for a Nonlinear Partial Differential Equation by Using Bilinear Neural Network Method</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>This paper extends a method, called bilinear neural network method (BNNM), to solve exact solutions to nonlinear partial differential equation. New, test functions are constructed by using this method. These test functions are composed of specific activation functions of single-layer model, specific activation functions of “2-2” model and arbitrary functions of “2-2-3” model. By means of the BNNM, nineteen sets of exact analytical solutions and twenty-four arbitrary function solutions of the dimensionally reduced p -gBKP equation are obtained via symbolic computation with the help of Maple. The fractal solitons waves are obtained by choosing appropriate values and the self-similar characteristics of these waves are observed by reducing the observation range and amplifying the partial picture. By giving a specific activation function in the single layer neural network model, exact periodic waves and breathers are obtained. Via various three-dimensional plots, contour plots and density plots, the evolution characteristic of these waves are exhibited.</description><subject>Breathers</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Exact solutions</subject><subject>Fractals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Neural networks</subject><subject>Nonlinear differential equations</subject><subject>Operations Research/Decision Theory</subject><subject>Partial differential equations</subject><subject>Self-similarity</subject><subject>Solitary waves</subject><subject>Statistics</subject><subject>Systems Theory</subject><subject>Three dimensional models</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kclKBDEQhhtRcH0AbwGvtmbrJUeXGRV0FFQ8hiSd1uiYaCXt8kS-pmlH8OSpqqjv_wvqL4ptgvcIxs1-JIRTXmKKS8EELaulYo1UlSgbXDfLucdYlDWhfLVYj_ERY1YL3K4VX1NQJqk5ug5zl4KPu-gAtEug4BNNB2-SC35cDmOTt5OPzKMrCy50zqA79WaR8h06BKvSg4WI-gBIoVnwc-etAnSlILl84dj1vQXrf4bJ66B-rPUnuo3O36ND98vP7ACZmNn0HuAJXdj0ELrNYqVX82i3futGcTud3BydlueXJ2dHB-elYaROZdUJxoUWljKjVceMUdgIK1hvKkJZ27S1bqkWuhGiprhXfcU072rOtVBKC7ZR7Cx8XyC8DjYm-RgG8PmkpLytScMrUWWKLCgDIUawvXwB95xfJgmWYx5ykYfMecgxDzlq6EITM-vvLfw5_y_6BnJtkHE</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhang, Runfa</creator><creator>Bilige, Sudao</creator><creator>Chaolu, Temuer</creator><general>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>Fractal Solitons, Arbitrary Function Solutions, Exact Periodic Wave and Breathers for a Nonlinear Partial Differential Equation by Using Bilinear Neural Network Method</title><author>Zhang, Runfa ; Bilige, Sudao ; Chaolu, Temuer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5d9349b9e23cbad3cca0c9e93fc51238786b82b9b799620faf53b4d644b9aab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Breathers</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Exact solutions</topic><topic>Fractals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Neural networks</topic><topic>Nonlinear differential equations</topic><topic>Operations Research/Decision Theory</topic><topic>Partial differential equations</topic><topic>Self-similarity</topic><topic>Solitary waves</topic><topic>Statistics</topic><topic>Systems Theory</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Runfa</creatorcontrib><creatorcontrib>Bilige, Sudao</creatorcontrib><creatorcontrib>Chaolu, Temuer</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Runfa</au><au>Bilige, Sudao</au><au>Chaolu, Temuer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractal Solitons, Arbitrary Function Solutions, Exact Periodic Wave and Breathers for a Nonlinear Partial Differential Equation by Using Bilinear Neural Network Method</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>34</volume><issue>1</issue><spage>122</spage><epage>139</epage><pages>122-139</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>This paper extends a method, called bilinear neural network method (BNNM), to solve exact solutions to nonlinear partial differential equation. New, test functions are constructed by using this method. These test functions are composed of specific activation functions of single-layer model, specific activation functions of “2-2” model and arbitrary functions of “2-2-3” model. By means of the BNNM, nineteen sets of exact analytical solutions and twenty-four arbitrary function solutions of the dimensionally reduced p -gBKP equation are obtained via symbolic computation with the help of Maple. The fractal solitons waves are obtained by choosing appropriate values and the self-similar characteristics of these waves are observed by reducing the observation range and amplifying the partial picture. By giving a specific activation function in the single layer neural network model, exact periodic waves and breathers are obtained. Via various three-dimensional plots, contour plots and density plots, the evolution characteristic of these waves are exhibited.</abstract><cop>Beijing</cop><pub>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</pub><doi>10.1007/s11424-020-9392-5</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1009-6124
ispartof Journal of systems science and complexity, 2021-02, Vol.34 (1), p.122-139
issn 1009-6124
1559-7067
language eng
recordid cdi_proquest_journals_2486174595
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Breathers
Complex Systems
Control
Exact solutions
Fractals
Mathematics
Mathematics and Statistics
Mathematics of Computing
Neural networks
Nonlinear differential equations
Operations Research/Decision Theory
Partial differential equations
Self-similarity
Solitary waves
Statistics
Systems Theory
Three dimensional models
title Fractal Solitons, Arbitrary Function Solutions, Exact Periodic Wave and Breathers for a Nonlinear Partial Differential Equation by Using Bilinear Neural Network Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractal%20Solitons,%20Arbitrary%20Function%20Solutions,%20Exact%20Periodic%20Wave%20and%20Breathers%20for%20a%20Nonlinear%20Partial%20Differential%20Equation%20by%20Using%20Bilinear%20Neural%20Network%20Method&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Zhang,%20Runfa&rft.date=2021-02-01&rft.volume=34&rft.issue=1&rft.spage=122&rft.epage=139&rft.pages=122-139&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-020-9392-5&rft_dat=%3Cproquest_cross%3E2486174595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486174595&rft_id=info:pmid/&rfr_iscdi=true