Fractal Solitons, Arbitrary Function Solutions, Exact Periodic Wave and Breathers for a Nonlinear Partial Differential Equation by Using Bilinear Neural Network Method
This paper extends a method, called bilinear neural network method (BNNM), to solve exact solutions to nonlinear partial differential equation. New, test functions are constructed by using this method. These test functions are composed of specific activation functions of single-layer model, specific...
Gespeichert in:
Veröffentlicht in: | Journal of systems science and complexity 2021-02, Vol.34 (1), p.122-139 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 139 |
---|---|
container_issue | 1 |
container_start_page | 122 |
container_title | Journal of systems science and complexity |
container_volume | 34 |
creator | Zhang, Runfa Bilige, Sudao Chaolu, Temuer |
description | This paper extends a method, called bilinear neural network method (BNNM), to solve exact solutions to nonlinear partial differential equation. New, test functions are constructed by using this method. These test functions are composed of specific activation functions of single-layer model, specific activation functions of “2-2” model and arbitrary functions of “2-2-3” model. By means of the BNNM, nineteen sets of exact analytical solutions and twenty-four arbitrary function solutions of the dimensionally reduced
p
-gBKP equation are obtained via symbolic computation with the help of Maple. The fractal solitons waves are obtained by choosing appropriate values and the self-similar characteristics of these waves are observed by reducing the observation range and amplifying the partial picture. By giving a specific activation function in the single layer neural network model, exact periodic waves and breathers are obtained. Via various three-dimensional plots, contour plots and density plots, the evolution characteristic of these waves are exhibited. |
doi_str_mv | 10.1007/s11424-020-9392-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486174595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486174595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5d9349b9e23cbad3cca0c9e93fc51238786b82b9b799620faf53b4d644b9aab93</originalsourceid><addsrcrecordid>eNp1kclKBDEQhhtRcH0AbwGvtmbrJUeXGRV0FFQ8hiSd1uiYaCXt8kS-pmlH8OSpqqjv_wvqL4ptgvcIxs1-JIRTXmKKS8EELaulYo1UlSgbXDfLucdYlDWhfLVYj_ERY1YL3K4VX1NQJqk5ug5zl4KPu-gAtEug4BNNB2-SC35cDmOTt5OPzKMrCy50zqA79WaR8h06BKvSg4WI-gBIoVnwc-etAnSlILl84dj1vQXrf4bJ66B-rPUnuo3O36ND98vP7ACZmNn0HuAJXdj0ELrNYqVX82i3futGcTud3BydlueXJ2dHB-elYaROZdUJxoUWljKjVceMUdgIK1hvKkJZ27S1bqkWuhGiprhXfcU072rOtVBKC7ZR7Cx8XyC8DjYm-RgG8PmkpLytScMrUWWKLCgDIUawvXwB95xfJgmWYx5ykYfMecgxDzlq6EITM-vvLfw5_y_6BnJtkHE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486174595</pqid></control><display><type>article</type><title>Fractal Solitons, Arbitrary Function Solutions, Exact Periodic Wave and Breathers for a Nonlinear Partial Differential Equation by Using Bilinear Neural Network Method</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Runfa ; Bilige, Sudao ; Chaolu, Temuer</creator><creatorcontrib>Zhang, Runfa ; Bilige, Sudao ; Chaolu, Temuer</creatorcontrib><description>This paper extends a method, called bilinear neural network method (BNNM), to solve exact solutions to nonlinear partial differential equation. New, test functions are constructed by using this method. These test functions are composed of specific activation functions of single-layer model, specific activation functions of “2-2” model and arbitrary functions of “2-2-3” model. By means of the BNNM, nineteen sets of exact analytical solutions and twenty-four arbitrary function solutions of the dimensionally reduced
p
-gBKP equation are obtained via symbolic computation with the help of Maple. The fractal solitons waves are obtained by choosing appropriate values and the self-similar characteristics of these waves are observed by reducing the observation range and amplifying the partial picture. By giving a specific activation function in the single layer neural network model, exact periodic waves and breathers are obtained. Via various three-dimensional plots, contour plots and density plots, the evolution characteristic of these waves are exhibited.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-020-9392-5</identifier><language>eng</language><publisher>Beijing: Academy of Mathematics and Systems Science, Chinese Academy of Sciences</publisher><subject>Breathers ; Complex Systems ; Control ; Exact solutions ; Fractals ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Neural networks ; Nonlinear differential equations ; Operations Research/Decision Theory ; Partial differential equations ; Self-similarity ; Solitary waves ; Statistics ; Systems Theory ; Three dimensional models</subject><ispartof>Journal of systems science and complexity, 2021-02, Vol.34 (1), p.122-139</ispartof><rights>The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2020</rights><rights>The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5d9349b9e23cbad3cca0c9e93fc51238786b82b9b799620faf53b4d644b9aab93</citedby><cites>FETCH-LOGICAL-c316t-5d9349b9e23cbad3cca0c9e93fc51238786b82b9b799620faf53b4d644b9aab93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11424-020-9392-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11424-020-9392-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Runfa</creatorcontrib><creatorcontrib>Bilige, Sudao</creatorcontrib><creatorcontrib>Chaolu, Temuer</creatorcontrib><title>Fractal Solitons, Arbitrary Function Solutions, Exact Periodic Wave and Breathers for a Nonlinear Partial Differential Equation by Using Bilinear Neural Network Method</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>This paper extends a method, called bilinear neural network method (BNNM), to solve exact solutions to nonlinear partial differential equation. New, test functions are constructed by using this method. These test functions are composed of specific activation functions of single-layer model, specific activation functions of “2-2” model and arbitrary functions of “2-2-3” model. By means of the BNNM, nineteen sets of exact analytical solutions and twenty-four arbitrary function solutions of the dimensionally reduced
p
-gBKP equation are obtained via symbolic computation with the help of Maple. The fractal solitons waves are obtained by choosing appropriate values and the self-similar characteristics of these waves are observed by reducing the observation range and amplifying the partial picture. By giving a specific activation function in the single layer neural network model, exact periodic waves and breathers are obtained. Via various three-dimensional plots, contour plots and density plots, the evolution characteristic of these waves are exhibited.</description><subject>Breathers</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Exact solutions</subject><subject>Fractals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Neural networks</subject><subject>Nonlinear differential equations</subject><subject>Operations Research/Decision Theory</subject><subject>Partial differential equations</subject><subject>Self-similarity</subject><subject>Solitary waves</subject><subject>Statistics</subject><subject>Systems Theory</subject><subject>Three dimensional models</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kclKBDEQhhtRcH0AbwGvtmbrJUeXGRV0FFQ8hiSd1uiYaCXt8kS-pmlH8OSpqqjv_wvqL4ptgvcIxs1-JIRTXmKKS8EELaulYo1UlSgbXDfLucdYlDWhfLVYj_ERY1YL3K4VX1NQJqk5ug5zl4KPu-gAtEug4BNNB2-SC35cDmOTt5OPzKMrCy50zqA79WaR8h06BKvSg4WI-gBIoVnwc-etAnSlILl84dj1vQXrf4bJ66B-rPUnuo3O36ND98vP7ACZmNn0HuAJXdj0ELrNYqVX82i3futGcTud3BydlueXJ2dHB-elYaROZdUJxoUWljKjVceMUdgIK1hvKkJZ27S1bqkWuhGiprhXfcU072rOtVBKC7ZR7Cx8XyC8DjYm-RgG8PmkpLytScMrUWWKLCgDIUawvXwB95xfJgmWYx5ykYfMecgxDzlq6EITM-vvLfw5_y_6BnJtkHE</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhang, Runfa</creator><creator>Bilige, Sudao</creator><creator>Chaolu, Temuer</creator><general>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>Fractal Solitons, Arbitrary Function Solutions, Exact Periodic Wave and Breathers for a Nonlinear Partial Differential Equation by Using Bilinear Neural Network Method</title><author>Zhang, Runfa ; Bilige, Sudao ; Chaolu, Temuer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5d9349b9e23cbad3cca0c9e93fc51238786b82b9b799620faf53b4d644b9aab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Breathers</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Exact solutions</topic><topic>Fractals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Neural networks</topic><topic>Nonlinear differential equations</topic><topic>Operations Research/Decision Theory</topic><topic>Partial differential equations</topic><topic>Self-similarity</topic><topic>Solitary waves</topic><topic>Statistics</topic><topic>Systems Theory</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Runfa</creatorcontrib><creatorcontrib>Bilige, Sudao</creatorcontrib><creatorcontrib>Chaolu, Temuer</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Runfa</au><au>Bilige, Sudao</au><au>Chaolu, Temuer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractal Solitons, Arbitrary Function Solutions, Exact Periodic Wave and Breathers for a Nonlinear Partial Differential Equation by Using Bilinear Neural Network Method</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>34</volume><issue>1</issue><spage>122</spage><epage>139</epage><pages>122-139</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>This paper extends a method, called bilinear neural network method (BNNM), to solve exact solutions to nonlinear partial differential equation. New, test functions are constructed by using this method. These test functions are composed of specific activation functions of single-layer model, specific activation functions of “2-2” model and arbitrary functions of “2-2-3” model. By means of the BNNM, nineteen sets of exact analytical solutions and twenty-four arbitrary function solutions of the dimensionally reduced
p
-gBKP equation are obtained via symbolic computation with the help of Maple. The fractal solitons waves are obtained by choosing appropriate values and the self-similar characteristics of these waves are observed by reducing the observation range and amplifying the partial picture. By giving a specific activation function in the single layer neural network model, exact periodic waves and breathers are obtained. Via various three-dimensional plots, contour plots and density plots, the evolution characteristic of these waves are exhibited.</abstract><cop>Beijing</cop><pub>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</pub><doi>10.1007/s11424-020-9392-5</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-6124 |
ispartof | Journal of systems science and complexity, 2021-02, Vol.34 (1), p.122-139 |
issn | 1009-6124 1559-7067 |
language | eng |
recordid | cdi_proquest_journals_2486174595 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Breathers Complex Systems Control Exact solutions Fractals Mathematics Mathematics and Statistics Mathematics of Computing Neural networks Nonlinear differential equations Operations Research/Decision Theory Partial differential equations Self-similarity Solitary waves Statistics Systems Theory Three dimensional models |
title | Fractal Solitons, Arbitrary Function Solutions, Exact Periodic Wave and Breathers for a Nonlinear Partial Differential Equation by Using Bilinear Neural Network Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractal%20Solitons,%20Arbitrary%20Function%20Solutions,%20Exact%20Periodic%20Wave%20and%20Breathers%20for%20a%20Nonlinear%20Partial%20Differential%20Equation%20by%20Using%20Bilinear%20Neural%20Network%20Method&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Zhang,%20Runfa&rft.date=2021-02-01&rft.volume=34&rft.issue=1&rft.spage=122&rft.epage=139&rft.pages=122-139&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-020-9392-5&rft_dat=%3Cproquest_cross%3E2486174595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486174595&rft_id=info:pmid/&rfr_iscdi=true |