Validation of Simulation Codes for Nuclear Imaging Using Digital Phantoms
Validation study of simulation codes was performed based on the measurement of a sphere phantom and the National Electrical Manufacturers Association (NEMA) body phantoms. SIMIND and Prominence Processor were used for the simulation. Both source and density maps were generated using the characterist...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Radiological Technology 2021, Vol.77(1), pp.41-47 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47 |
---|---|
container_issue | 1 |
container_start_page | 41 |
container_title | Japanese Journal of Radiological Technology |
container_volume | 77 |
creator | Okuda, Koichi Nosaka, Hiroki Ito, Toshimune Matsutomo, Norikazu Ichikawa, Hajime Shirakawa, Seiji Yamaki, Noriyasu Kikuchi, Akihiro Tsushima, Hiroyuki Ljungberg, Michael |
description | Validation study of simulation codes was performed based on the measurement of a sphere phantom and the National Electrical Manufacturers Association (NEMA) body phantoms. SIMIND and Prominence Processor were used for the simulation. Both source and density maps were generated using the characteristics of 99mTc energy. A full width at half maximum (FWHM) of the sphere phantom was measured and simulated. Simulated recovery coefficient and the background count coefficient of variation were also compared with the measured values in the body phantom study. When the two simulation codes were compared with actual measurements, maximum relative errors of FWHM values were 3.6% for Prominence Processor and -10.0% for SIMIND. The maximum relative errors of relative recovery coefficients exhibited 11.8% for Prominence Processor and -2.0% for SIMIND in the body phantom study. The coefficients of variation of the SPECT count in the background were significantly different among the measurement and two simulation codes. The simulated FWHM values and recovery coefficients paralleled measured results. However, the noise characteristic differed among actual measurements and two simulation codes in the background count statistics. |
doi_str_mv | 10.6009/jjrt.2021_JSRT_77.1.41 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2486167952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486167952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3011-ff5d665f71a8b817688bdedc4c3865ab4975bdf8cc1be627d5862638e69491bf3</originalsourceid><addsrcrecordid>eNplkF1LwzAUhoMobsz9hVHwujNp0iS9lPk1GSpu8zakbdKl9GMm7YX_3szOIXhzDic87xt4AJghOKcQJjdlabt5BCMkntfvG8HYHM0JOgNjxDkKCef4HIwhpklIMIxHYOqcSaFP-idILsEIY8IwZHwMlh-yMrnsTNsErQ7Wpu6r4Vq0uXKBbm3w0meVkjZY1rIwTRFs3WHemcJ0sgredrLp2tpdgQstK6emxz0B24f7zeIpXL0-Lhe3qzDDEKFQ6zinNNYMSZ5yxCjnaa7yjGSY01imJGFxmmueZShVNGJ5zGlEMVc0IQlKNZ6A66F3b9vPXrlOlG1vG_-liAiniLIkjjxFByqzrXNWabG3ppb2SyAoDhLFQaL4K1EgQZAPzo71fVqr_BT7VeaB1QCUrpOFOgHSdsZ7Gnp_2vz413_Csp20QjX4G5gaifE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486167952</pqid></control><display><type>article</type><title>Validation of Simulation Codes for Nuclear Imaging Using Digital Phantoms</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Okuda, Koichi ; Nosaka, Hiroki ; Ito, Toshimune ; Matsutomo, Norikazu ; Ichikawa, Hajime ; Shirakawa, Seiji ; Yamaki, Noriyasu ; Kikuchi, Akihiro ; Tsushima, Hiroyuki ; Ljungberg, Michael</creator><creatorcontrib>Okuda, Koichi ; Nosaka, Hiroki ; Ito, Toshimune ; Matsutomo, Norikazu ; Ichikawa, Hajime ; Shirakawa, Seiji ; Yamaki, Noriyasu ; Kikuchi, Akihiro ; Tsushima, Hiroyuki ; Ljungberg, Michael</creatorcontrib><description>Validation study of simulation codes was performed based on the measurement of a sphere phantom and the National Electrical Manufacturers Association (NEMA) body phantoms. SIMIND and Prominence Processor were used for the simulation. Both source and density maps were generated using the characteristics of 99mTc energy. A full width at half maximum (FWHM) of the sphere phantom was measured and simulated. Simulated recovery coefficient and the background count coefficient of variation were also compared with the measured values in the body phantom study. When the two simulation codes were compared with actual measurements, maximum relative errors of FWHM values were 3.6% for Prominence Processor and -10.0% for SIMIND. The maximum relative errors of relative recovery coefficients exhibited 11.8% for Prominence Processor and -2.0% for SIMIND in the body phantom study. The coefficients of variation of the SPECT count in the background were significantly different among the measurement and two simulation codes. The simulated FWHM values and recovery coefficients paralleled measured results. However, the noise characteristic differed among actual measurements and two simulation codes in the background count statistics.</description><identifier>ISSN: 0369-4305</identifier><identifier>EISSN: 1881-4883</identifier><identifier>DOI: 10.6009/jjrt.2021_JSRT_77.1.41</identifier><identifier>PMID: 33473078</identifier><language>eng ; jpn</language><publisher>Japan: Japanese Society of Radiological Technology</publisher><subject>body phantom ; Coefficient of variation ; Computer Simulation ; Digital imaging ; Microprocessors ; Phantoms, Imaging ; prominence processor ; Prominences ; Recovery ; Simulation ; simulation of imaging nuclear detectors (SIMIND) ; Single photon emission computed tomography ; sphere phantom ; Tomography, Emission-Computed, Single-Photon</subject><ispartof>Japanese Journal of Radiological Technology, 2021, Vol.77(1), pp.41-47</ispartof><rights>2021 Japanese Society of Radiological Technology</rights><rights>Copyright Japan Science and Technology Agency 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3011-ff5d665f71a8b817688bdedc4c3865ab4975bdf8cc1be627d5862638e69491bf3</citedby><cites>FETCH-LOGICAL-c3011-ff5d665f71a8b817688bdedc4c3865ab4975bdf8cc1be627d5862638e69491bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33473078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okuda, Koichi</creatorcontrib><creatorcontrib>Nosaka, Hiroki</creatorcontrib><creatorcontrib>Ito, Toshimune</creatorcontrib><creatorcontrib>Matsutomo, Norikazu</creatorcontrib><creatorcontrib>Ichikawa, Hajime</creatorcontrib><creatorcontrib>Shirakawa, Seiji</creatorcontrib><creatorcontrib>Yamaki, Noriyasu</creatorcontrib><creatorcontrib>Kikuchi, Akihiro</creatorcontrib><creatorcontrib>Tsushima, Hiroyuki</creatorcontrib><creatorcontrib>Ljungberg, Michael</creatorcontrib><title>Validation of Simulation Codes for Nuclear Imaging Using Digital Phantoms</title><title>Japanese Journal of Radiological Technology</title><addtitle>Jpn. J. Radiol. Technol.</addtitle><description>Validation study of simulation codes was performed based on the measurement of a sphere phantom and the National Electrical Manufacturers Association (NEMA) body phantoms. SIMIND and Prominence Processor were used for the simulation. Both source and density maps were generated using the characteristics of 99mTc energy. A full width at half maximum (FWHM) of the sphere phantom was measured and simulated. Simulated recovery coefficient and the background count coefficient of variation were also compared with the measured values in the body phantom study. When the two simulation codes were compared with actual measurements, maximum relative errors of FWHM values were 3.6% for Prominence Processor and -10.0% for SIMIND. The maximum relative errors of relative recovery coefficients exhibited 11.8% for Prominence Processor and -2.0% for SIMIND in the body phantom study. The coefficients of variation of the SPECT count in the background were significantly different among the measurement and two simulation codes. The simulated FWHM values and recovery coefficients paralleled measured results. However, the noise characteristic differed among actual measurements and two simulation codes in the background count statistics.</description><subject>body phantom</subject><subject>Coefficient of variation</subject><subject>Computer Simulation</subject><subject>Digital imaging</subject><subject>Microprocessors</subject><subject>Phantoms, Imaging</subject><subject>prominence processor</subject><subject>Prominences</subject><subject>Recovery</subject><subject>Simulation</subject><subject>simulation of imaging nuclear detectors (SIMIND)</subject><subject>Single photon emission computed tomography</subject><subject>sphere phantom</subject><subject>Tomography, Emission-Computed, Single-Photon</subject><issn>0369-4305</issn><issn>1881-4883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkF1LwzAUhoMobsz9hVHwujNp0iS9lPk1GSpu8zakbdKl9GMm7YX_3szOIXhzDic87xt4AJghOKcQJjdlabt5BCMkntfvG8HYHM0JOgNjxDkKCef4HIwhpklIMIxHYOqcSaFP-idILsEIY8IwZHwMlh-yMrnsTNsErQ7Wpu6r4Vq0uXKBbm3w0meVkjZY1rIwTRFs3WHemcJ0sgredrLp2tpdgQstK6emxz0B24f7zeIpXL0-Lhe3qzDDEKFQ6zinNNYMSZ5yxCjnaa7yjGSY01imJGFxmmueZShVNGJ5zGlEMVc0IQlKNZ6A66F3b9vPXrlOlG1vG_-liAiniLIkjjxFByqzrXNWabG3ppb2SyAoDhLFQaL4K1EgQZAPzo71fVqr_BT7VeaB1QCUrpOFOgHSdsZ7Gnp_2vz413_Csp20QjX4G5gaifE</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Okuda, Koichi</creator><creator>Nosaka, Hiroki</creator><creator>Ito, Toshimune</creator><creator>Matsutomo, Norikazu</creator><creator>Ichikawa, Hajime</creator><creator>Shirakawa, Seiji</creator><creator>Yamaki, Noriyasu</creator><creator>Kikuchi, Akihiro</creator><creator>Tsushima, Hiroyuki</creator><creator>Ljungberg, Michael</creator><general>Japanese Society of Radiological Technology</general><general>Japan Science and Technology Agency</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>2021</creationdate><title>Validation of Simulation Codes for Nuclear Imaging Using Digital Phantoms</title><author>Okuda, Koichi ; Nosaka, Hiroki ; Ito, Toshimune ; Matsutomo, Norikazu ; Ichikawa, Hajime ; Shirakawa, Seiji ; Yamaki, Noriyasu ; Kikuchi, Akihiro ; Tsushima, Hiroyuki ; Ljungberg, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3011-ff5d665f71a8b817688bdedc4c3865ab4975bdf8cc1be627d5862638e69491bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2021</creationdate><topic>body phantom</topic><topic>Coefficient of variation</topic><topic>Computer Simulation</topic><topic>Digital imaging</topic><topic>Microprocessors</topic><topic>Phantoms, Imaging</topic><topic>prominence processor</topic><topic>Prominences</topic><topic>Recovery</topic><topic>Simulation</topic><topic>simulation of imaging nuclear detectors (SIMIND)</topic><topic>Single photon emission computed tomography</topic><topic>sphere phantom</topic><topic>Tomography, Emission-Computed, Single-Photon</topic><toplevel>online_resources</toplevel><creatorcontrib>Okuda, Koichi</creatorcontrib><creatorcontrib>Nosaka, Hiroki</creatorcontrib><creatorcontrib>Ito, Toshimune</creatorcontrib><creatorcontrib>Matsutomo, Norikazu</creatorcontrib><creatorcontrib>Ichikawa, Hajime</creatorcontrib><creatorcontrib>Shirakawa, Seiji</creatorcontrib><creatorcontrib>Yamaki, Noriyasu</creatorcontrib><creatorcontrib>Kikuchi, Akihiro</creatorcontrib><creatorcontrib>Tsushima, Hiroyuki</creatorcontrib><creatorcontrib>Ljungberg, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Japanese Journal of Radiological Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okuda, Koichi</au><au>Nosaka, Hiroki</au><au>Ito, Toshimune</au><au>Matsutomo, Norikazu</au><au>Ichikawa, Hajime</au><au>Shirakawa, Seiji</au><au>Yamaki, Noriyasu</au><au>Kikuchi, Akihiro</au><au>Tsushima, Hiroyuki</au><au>Ljungberg, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of Simulation Codes for Nuclear Imaging Using Digital Phantoms</atitle><jtitle>Japanese Journal of Radiological Technology</jtitle><addtitle>Jpn. J. Radiol. Technol.</addtitle><date>2021</date><risdate>2021</risdate><volume>77</volume><issue>1</issue><spage>41</spage><epage>47</epage><pages>41-47</pages><issn>0369-4305</issn><eissn>1881-4883</eissn><abstract>Validation study of simulation codes was performed based on the measurement of a sphere phantom and the National Electrical Manufacturers Association (NEMA) body phantoms. SIMIND and Prominence Processor were used for the simulation. Both source and density maps were generated using the characteristics of 99mTc energy. A full width at half maximum (FWHM) of the sphere phantom was measured and simulated. Simulated recovery coefficient and the background count coefficient of variation were also compared with the measured values in the body phantom study. When the two simulation codes were compared with actual measurements, maximum relative errors of FWHM values were 3.6% for Prominence Processor and -10.0% for SIMIND. The maximum relative errors of relative recovery coefficients exhibited 11.8% for Prominence Processor and -2.0% for SIMIND in the body phantom study. The coefficients of variation of the SPECT count in the background were significantly different among the measurement and two simulation codes. The simulated FWHM values and recovery coefficients paralleled measured results. However, the noise characteristic differed among actual measurements and two simulation codes in the background count statistics.</abstract><cop>Japan</cop><pub>Japanese Society of Radiological Technology</pub><pmid>33473078</pmid><doi>10.6009/jjrt.2021_JSRT_77.1.41</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0369-4305 |
ispartof | Japanese Journal of Radiological Technology, 2021, Vol.77(1), pp.41-47 |
issn | 0369-4305 1881-4883 |
language | eng ; jpn |
recordid | cdi_proquest_journals_2486167952 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | body phantom Coefficient of variation Computer Simulation Digital imaging Microprocessors Phantoms, Imaging prominence processor Prominences Recovery Simulation simulation of imaging nuclear detectors (SIMIND) Single photon emission computed tomography sphere phantom Tomography, Emission-Computed, Single-Photon |
title | Validation of Simulation Codes for Nuclear Imaging Using Digital Phantoms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20Simulation%20Codes%20for%20Nuclear%20Imaging%20Using%20Digital%20Phantoms&rft.jtitle=Japanese%20Journal%20of%20Radiological%20Technology&rft.au=Okuda,%20Koichi&rft.date=2021&rft.volume=77&rft.issue=1&rft.spage=41&rft.epage=47&rft.pages=41-47&rft.issn=0369-4305&rft.eissn=1881-4883&rft_id=info:doi/10.6009/jjrt.2021_JSRT_77.1.41&rft_dat=%3Cproquest_cross%3E2486167952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486167952&rft_id=info:pmid/33473078&rfr_iscdi=true |