Numerical evaluation of acoustic characteristics of a thrust chamber with quarter-wave resonators

Acoustic characteristics of a thrust chamber with quarter-wave resonators are numerically studied based on the unsteady Reynolds-averaged Navier-Stokes (URANS) method. Organized pressure disturbance model and constant-volume bomb model are applied as artificial disturbances to excite pressure oscill...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences 2021-02, Vol.64 (2), p.375-386
Hauptverfasser: Qin, JianXiu, Zhou, LiXin, Zhang, HuiQiang, Wang, Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 386
container_issue 2
container_start_page 375
container_title Science China. Technological sciences
container_volume 64
creator Qin, JianXiu
Zhou, LiXin
Zhang, HuiQiang
Wang, Bing
description Acoustic characteristics of a thrust chamber with quarter-wave resonators are numerically studied based on the unsteady Reynolds-averaged Navier-Stokes (URANS) method. Organized pressure disturbance model and constant-volume bomb model are applied as artificial disturbances to excite pressure oscillations in the chamber. Eigenfrequencies and amplitudes of acoustic modes of the chamber are obtained by fast fourier transform (FFT) analysis, while damping characteristics are evaluated by the half-power bandwidth method. Predicted damping capacities of the chamber with and without quarter-wave resonators agree well with experimental results. Pressure oscillations can be controlled by a quarter-wave resonator mainly through reducing the amplitude of target acoustic mode, rather than increasing damping capacity of the chamber. Major damping mechanism of the resonator is cutting down pressure peak of target acoustic mode and raising up its pressure trough (CPRT); therefore the amplitude of target acoustic mode is reduced significantly. Moreover, acoustic energy can be dissipated by vortex at the orifice and by viscosity on the surface of a resonator, which increase damping capacity of the chamber slightly. Under the condition with multi-modes pressure oscillations, a resonator can still suppress pressure oscillations of target acoustic mode through CPRT. However, it may enhance pressure oscillations of other modes due to redistribution of oscillation energy among all acoustic modes.
doi_str_mv 10.1007/s11431-019-1575-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2485527402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485527402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2eb4f0a535893f63bf041fafaa891898a153ef463fc65d045c3ef60d9f3c92313</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGp_gLuA62ju5DGTpRRfUHSj63CbJnZKO9MmMy3-ezOO4Mq7yT2c79zAIeQa-C1wXt4lACmAcTAMVKmYPiMTqHRWhvPzvOtSslIUcElmKW14HlEZDnJC8LXf-Vg73FJ_xG2PXd02tA0UXdunrnbUrTGi6zI0yPTj0W4dszt4u6WP9FR3a3roMWaMnfDoafSpbbBrY7oiFwG3yc9-3yn5eHx4nz-zxdvTy_x-wZwA3bHCL2XgqISqjAhaLAOXEDAgVgYqUyEo4YPUIjitVlwql6XmKxOEM4UAMSU34919bA-9T53dtH1s8pe2kJVSRSl5kSkYKRfblKIPdh_rHcYvC9wOZdqxTJvLtEOZVudMMWZSZptPH_8u_x_6BipYeE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485527402</pqid></control><display><type>article</type><title>Numerical evaluation of acoustic characteristics of a thrust chamber with quarter-wave resonators</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Qin, JianXiu ; Zhou, LiXin ; Zhang, HuiQiang ; Wang, Bing</creator><creatorcontrib>Qin, JianXiu ; Zhou, LiXin ; Zhang, HuiQiang ; Wang, Bing</creatorcontrib><description>Acoustic characteristics of a thrust chamber with quarter-wave resonators are numerically studied based on the unsteady Reynolds-averaged Navier-Stokes (URANS) method. Organized pressure disturbance model and constant-volume bomb model are applied as artificial disturbances to excite pressure oscillations in the chamber. Eigenfrequencies and amplitudes of acoustic modes of the chamber are obtained by fast fourier transform (FFT) analysis, while damping characteristics are evaluated by the half-power bandwidth method. Predicted damping capacities of the chamber with and without quarter-wave resonators agree well with experimental results. Pressure oscillations can be controlled by a quarter-wave resonator mainly through reducing the amplitude of target acoustic mode, rather than increasing damping capacity of the chamber. Major damping mechanism of the resonator is cutting down pressure peak of target acoustic mode and raising up its pressure trough (CPRT); therefore the amplitude of target acoustic mode is reduced significantly. Moreover, acoustic energy can be dissipated by vortex at the orifice and by viscosity on the surface of a resonator, which increase damping capacity of the chamber slightly. Under the condition with multi-modes pressure oscillations, a resonator can still suppress pressure oscillations of target acoustic mode through CPRT. However, it may enhance pressure oscillations of other modes due to redistribution of oscillation energy among all acoustic modes.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-019-1575-6</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Acoustics ; Amplitudes ; Computational fluid dynamics ; Damping capacity ; Engineering ; Fast Fourier transformations ; Fourier transforms ; Mathematical models ; Orifices ; Pressure oscillations ; Resonant frequencies ; Resonators ; Reynolds averaged Navier-Stokes method ; Thrust chambers</subject><ispartof>Science China. Technological sciences, 2021-02, Vol.64 (2), p.375-386</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2eb4f0a535893f63bf041fafaa891898a153ef463fc65d045c3ef60d9f3c92313</citedby><cites>FETCH-LOGICAL-c316t-2eb4f0a535893f63bf041fafaa891898a153ef463fc65d045c3ef60d9f3c92313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-019-1575-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-019-1575-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Qin, JianXiu</creatorcontrib><creatorcontrib>Zhou, LiXin</creatorcontrib><creatorcontrib>Zhang, HuiQiang</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><title>Numerical evaluation of acoustic characteristics of a thrust chamber with quarter-wave resonators</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>Acoustic characteristics of a thrust chamber with quarter-wave resonators are numerically studied based on the unsteady Reynolds-averaged Navier-Stokes (URANS) method. Organized pressure disturbance model and constant-volume bomb model are applied as artificial disturbances to excite pressure oscillations in the chamber. Eigenfrequencies and amplitudes of acoustic modes of the chamber are obtained by fast fourier transform (FFT) analysis, while damping characteristics are evaluated by the half-power bandwidth method. Predicted damping capacities of the chamber with and without quarter-wave resonators agree well with experimental results. Pressure oscillations can be controlled by a quarter-wave resonator mainly through reducing the amplitude of target acoustic mode, rather than increasing damping capacity of the chamber. Major damping mechanism of the resonator is cutting down pressure peak of target acoustic mode and raising up its pressure trough (CPRT); therefore the amplitude of target acoustic mode is reduced significantly. Moreover, acoustic energy can be dissipated by vortex at the orifice and by viscosity on the surface of a resonator, which increase damping capacity of the chamber slightly. Under the condition with multi-modes pressure oscillations, a resonator can still suppress pressure oscillations of target acoustic mode through CPRT. However, it may enhance pressure oscillations of other modes due to redistribution of oscillation energy among all acoustic modes.</description><subject>Acoustics</subject><subject>Amplitudes</subject><subject>Computational fluid dynamics</subject><subject>Damping capacity</subject><subject>Engineering</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Mathematical models</subject><subject>Orifices</subject><subject>Pressure oscillations</subject><subject>Resonant frequencies</subject><subject>Resonators</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Thrust chambers</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWGp_gLuA62ju5DGTpRRfUHSj63CbJnZKO9MmMy3-ezOO4Mq7yT2c79zAIeQa-C1wXt4lACmAcTAMVKmYPiMTqHRWhvPzvOtSslIUcElmKW14HlEZDnJC8LXf-Vg73FJ_xG2PXd02tA0UXdunrnbUrTGi6zI0yPTj0W4dszt4u6WP9FR3a3roMWaMnfDoafSpbbBrY7oiFwG3yc9-3yn5eHx4nz-zxdvTy_x-wZwA3bHCL2XgqISqjAhaLAOXEDAgVgYqUyEo4YPUIjitVlwql6XmKxOEM4UAMSU34919bA-9T53dtH1s8pe2kJVSRSl5kSkYKRfblKIPdh_rHcYvC9wOZdqxTJvLtEOZVudMMWZSZptPH_8u_x_6BipYeE0</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Qin, JianXiu</creator><creator>Zhou, LiXin</creator><creator>Zhang, HuiQiang</creator><creator>Wang, Bing</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>Numerical evaluation of acoustic characteristics of a thrust chamber with quarter-wave resonators</title><author>Qin, JianXiu ; Zhou, LiXin ; Zhang, HuiQiang ; Wang, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2eb4f0a535893f63bf041fafaa891898a153ef463fc65d045c3ef60d9f3c92313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Amplitudes</topic><topic>Computational fluid dynamics</topic><topic>Damping capacity</topic><topic>Engineering</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Mathematical models</topic><topic>Orifices</topic><topic>Pressure oscillations</topic><topic>Resonant frequencies</topic><topic>Resonators</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Thrust chambers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, JianXiu</creatorcontrib><creatorcontrib>Zhou, LiXin</creatorcontrib><creatorcontrib>Zhang, HuiQiang</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, JianXiu</au><au>Zhou, LiXin</au><au>Zhang, HuiQiang</au><au>Wang, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical evaluation of acoustic characteristics of a thrust chamber with quarter-wave resonators</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>64</volume><issue>2</issue><spage>375</spage><epage>386</epage><pages>375-386</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>Acoustic characteristics of a thrust chamber with quarter-wave resonators are numerically studied based on the unsteady Reynolds-averaged Navier-Stokes (URANS) method. Organized pressure disturbance model and constant-volume bomb model are applied as artificial disturbances to excite pressure oscillations in the chamber. Eigenfrequencies and amplitudes of acoustic modes of the chamber are obtained by fast fourier transform (FFT) analysis, while damping characteristics are evaluated by the half-power bandwidth method. Predicted damping capacities of the chamber with and without quarter-wave resonators agree well with experimental results. Pressure oscillations can be controlled by a quarter-wave resonator mainly through reducing the amplitude of target acoustic mode, rather than increasing damping capacity of the chamber. Major damping mechanism of the resonator is cutting down pressure peak of target acoustic mode and raising up its pressure trough (CPRT); therefore the amplitude of target acoustic mode is reduced significantly. Moreover, acoustic energy can be dissipated by vortex at the orifice and by viscosity on the surface of a resonator, which increase damping capacity of the chamber slightly. Under the condition with multi-modes pressure oscillations, a resonator can still suppress pressure oscillations of target acoustic mode through CPRT. However, it may enhance pressure oscillations of other modes due to redistribution of oscillation energy among all acoustic modes.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-019-1575-6</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7321
ispartof Science China. Technological sciences, 2021-02, Vol.64 (2), p.375-386
issn 1674-7321
1869-1900
language eng
recordid cdi_proquest_journals_2485527402
source SpringerLink Journals; Alma/SFX Local Collection
subjects Acoustics
Amplitudes
Computational fluid dynamics
Damping capacity
Engineering
Fast Fourier transformations
Fourier transforms
Mathematical models
Orifices
Pressure oscillations
Resonant frequencies
Resonators
Reynolds averaged Navier-Stokes method
Thrust chambers
title Numerical evaluation of acoustic characteristics of a thrust chamber with quarter-wave resonators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20evaluation%20of%20acoustic%20characteristics%20of%20a%20thrust%20chamber%20with%20quarter-wave%20resonators&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Qin,%20JianXiu&rft.date=2021-02-01&rft.volume=64&rft.issue=2&rft.spage=375&rft.epage=386&rft.pages=375-386&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-019-1575-6&rft_dat=%3Cproquest_cross%3E2485527402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485527402&rft_id=info:pmid/&rfr_iscdi=true