Numerical evaluation of acoustic characteristics of a thrust chamber with quarter-wave resonators
Acoustic characteristics of a thrust chamber with quarter-wave resonators are numerically studied based on the unsteady Reynolds-averaged Navier-Stokes (URANS) method. Organized pressure disturbance model and constant-volume bomb model are applied as artificial disturbances to excite pressure oscill...
Gespeichert in:
Veröffentlicht in: | Science China. Technological sciences 2021-02, Vol.64 (2), p.375-386 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 386 |
---|---|
container_issue | 2 |
container_start_page | 375 |
container_title | Science China. Technological sciences |
container_volume | 64 |
creator | Qin, JianXiu Zhou, LiXin Zhang, HuiQiang Wang, Bing |
description | Acoustic characteristics of a thrust chamber with quarter-wave resonators are numerically studied based on the unsteady Reynolds-averaged Navier-Stokes (URANS) method. Organized pressure disturbance model and constant-volume bomb model are applied as artificial disturbances to excite pressure oscillations in the chamber. Eigenfrequencies and amplitudes of acoustic modes of the chamber are obtained by fast fourier transform (FFT) analysis, while damping characteristics are evaluated by the half-power bandwidth method. Predicted damping capacities of the chamber with and without quarter-wave resonators agree well with experimental results. Pressure oscillations can be controlled by a quarter-wave resonator mainly through reducing the amplitude of target acoustic mode, rather than increasing damping capacity of the chamber. Major damping mechanism of the resonator is cutting down pressure peak of target acoustic mode and raising up its pressure trough (CPRT); therefore the amplitude of target acoustic mode is reduced significantly. Moreover, acoustic energy can be dissipated by vortex at the orifice and by viscosity on the surface of a resonator, which increase damping capacity of the chamber slightly. Under the condition with multi-modes pressure oscillations, a resonator can still suppress pressure oscillations of target acoustic mode through CPRT. However, it may enhance pressure oscillations of other modes due to redistribution of oscillation energy among all acoustic modes. |
doi_str_mv | 10.1007/s11431-019-1575-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2485527402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485527402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2eb4f0a535893f63bf041fafaa891898a153ef463fc65d045c3ef60d9f3c92313</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGp_gLuA62ju5DGTpRRfUHSj63CbJnZKO9MmMy3-ezOO4Mq7yT2c79zAIeQa-C1wXt4lACmAcTAMVKmYPiMTqHRWhvPzvOtSslIUcElmKW14HlEZDnJC8LXf-Vg73FJ_xG2PXd02tA0UXdunrnbUrTGi6zI0yPTj0W4dszt4u6WP9FR3a3roMWaMnfDoafSpbbBrY7oiFwG3yc9-3yn5eHx4nz-zxdvTy_x-wZwA3bHCL2XgqISqjAhaLAOXEDAgVgYqUyEo4YPUIjitVlwql6XmKxOEM4UAMSU34919bA-9T53dtH1s8pe2kJVSRSl5kSkYKRfblKIPdh_rHcYvC9wOZdqxTJvLtEOZVudMMWZSZptPH_8u_x_6BipYeE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485527402</pqid></control><display><type>article</type><title>Numerical evaluation of acoustic characteristics of a thrust chamber with quarter-wave resonators</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Qin, JianXiu ; Zhou, LiXin ; Zhang, HuiQiang ; Wang, Bing</creator><creatorcontrib>Qin, JianXiu ; Zhou, LiXin ; Zhang, HuiQiang ; Wang, Bing</creatorcontrib><description>Acoustic characteristics of a thrust chamber with quarter-wave resonators are numerically studied based on the unsteady Reynolds-averaged Navier-Stokes (URANS) method. Organized pressure disturbance model and constant-volume bomb model are applied as artificial disturbances to excite pressure oscillations in the chamber. Eigenfrequencies and amplitudes of acoustic modes of the chamber are obtained by fast fourier transform (FFT) analysis, while damping characteristics are evaluated by the half-power bandwidth method. Predicted damping capacities of the chamber with and without quarter-wave resonators agree well with experimental results. Pressure oscillations can be controlled by a quarter-wave resonator mainly through reducing the amplitude of target acoustic mode, rather than increasing damping capacity of the chamber. Major damping mechanism of the resonator is cutting down pressure peak of target acoustic mode and raising up its pressure trough (CPRT); therefore the amplitude of target acoustic mode is reduced significantly. Moreover, acoustic energy can be dissipated by vortex at the orifice and by viscosity on the surface of a resonator, which increase damping capacity of the chamber slightly. Under the condition with multi-modes pressure oscillations, a resonator can still suppress pressure oscillations of target acoustic mode through CPRT. However, it may enhance pressure oscillations of other modes due to redistribution of oscillation energy among all acoustic modes.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-019-1575-6</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Acoustics ; Amplitudes ; Computational fluid dynamics ; Damping capacity ; Engineering ; Fast Fourier transformations ; Fourier transforms ; Mathematical models ; Orifices ; Pressure oscillations ; Resonant frequencies ; Resonators ; Reynolds averaged Navier-Stokes method ; Thrust chambers</subject><ispartof>Science China. Technological sciences, 2021-02, Vol.64 (2), p.375-386</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2eb4f0a535893f63bf041fafaa891898a153ef463fc65d045c3ef60d9f3c92313</citedby><cites>FETCH-LOGICAL-c316t-2eb4f0a535893f63bf041fafaa891898a153ef463fc65d045c3ef60d9f3c92313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-019-1575-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-019-1575-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Qin, JianXiu</creatorcontrib><creatorcontrib>Zhou, LiXin</creatorcontrib><creatorcontrib>Zhang, HuiQiang</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><title>Numerical evaluation of acoustic characteristics of a thrust chamber with quarter-wave resonators</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>Acoustic characteristics of a thrust chamber with quarter-wave resonators are numerically studied based on the unsteady Reynolds-averaged Navier-Stokes (URANS) method. Organized pressure disturbance model and constant-volume bomb model are applied as artificial disturbances to excite pressure oscillations in the chamber. Eigenfrequencies and amplitudes of acoustic modes of the chamber are obtained by fast fourier transform (FFT) analysis, while damping characteristics are evaluated by the half-power bandwidth method. Predicted damping capacities of the chamber with and without quarter-wave resonators agree well with experimental results. Pressure oscillations can be controlled by a quarter-wave resonator mainly through reducing the amplitude of target acoustic mode, rather than increasing damping capacity of the chamber. Major damping mechanism of the resonator is cutting down pressure peak of target acoustic mode and raising up its pressure trough (CPRT); therefore the amplitude of target acoustic mode is reduced significantly. Moreover, acoustic energy can be dissipated by vortex at the orifice and by viscosity on the surface of a resonator, which increase damping capacity of the chamber slightly. Under the condition with multi-modes pressure oscillations, a resonator can still suppress pressure oscillations of target acoustic mode through CPRT. However, it may enhance pressure oscillations of other modes due to redistribution of oscillation energy among all acoustic modes.</description><subject>Acoustics</subject><subject>Amplitudes</subject><subject>Computational fluid dynamics</subject><subject>Damping capacity</subject><subject>Engineering</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Mathematical models</subject><subject>Orifices</subject><subject>Pressure oscillations</subject><subject>Resonant frequencies</subject><subject>Resonators</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Thrust chambers</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWGp_gLuA62ju5DGTpRRfUHSj63CbJnZKO9MmMy3-ezOO4Mq7yT2c79zAIeQa-C1wXt4lACmAcTAMVKmYPiMTqHRWhvPzvOtSslIUcElmKW14HlEZDnJC8LXf-Vg73FJ_xG2PXd02tA0UXdunrnbUrTGi6zI0yPTj0W4dszt4u6WP9FR3a3roMWaMnfDoafSpbbBrY7oiFwG3yc9-3yn5eHx4nz-zxdvTy_x-wZwA3bHCL2XgqISqjAhaLAOXEDAgVgYqUyEo4YPUIjitVlwql6XmKxOEM4UAMSU34919bA-9T53dtH1s8pe2kJVSRSl5kSkYKRfblKIPdh_rHcYvC9wOZdqxTJvLtEOZVudMMWZSZptPH_8u_x_6BipYeE0</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Qin, JianXiu</creator><creator>Zhou, LiXin</creator><creator>Zhang, HuiQiang</creator><creator>Wang, Bing</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>Numerical evaluation of acoustic characteristics of a thrust chamber with quarter-wave resonators</title><author>Qin, JianXiu ; Zhou, LiXin ; Zhang, HuiQiang ; Wang, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2eb4f0a535893f63bf041fafaa891898a153ef463fc65d045c3ef60d9f3c92313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Amplitudes</topic><topic>Computational fluid dynamics</topic><topic>Damping capacity</topic><topic>Engineering</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Mathematical models</topic><topic>Orifices</topic><topic>Pressure oscillations</topic><topic>Resonant frequencies</topic><topic>Resonators</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Thrust chambers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, JianXiu</creatorcontrib><creatorcontrib>Zhou, LiXin</creatorcontrib><creatorcontrib>Zhang, HuiQiang</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, JianXiu</au><au>Zhou, LiXin</au><au>Zhang, HuiQiang</au><au>Wang, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical evaluation of acoustic characteristics of a thrust chamber with quarter-wave resonators</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>64</volume><issue>2</issue><spage>375</spage><epage>386</epage><pages>375-386</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>Acoustic characteristics of a thrust chamber with quarter-wave resonators are numerically studied based on the unsteady Reynolds-averaged Navier-Stokes (URANS) method. Organized pressure disturbance model and constant-volume bomb model are applied as artificial disturbances to excite pressure oscillations in the chamber. Eigenfrequencies and amplitudes of acoustic modes of the chamber are obtained by fast fourier transform (FFT) analysis, while damping characteristics are evaluated by the half-power bandwidth method. Predicted damping capacities of the chamber with and without quarter-wave resonators agree well with experimental results. Pressure oscillations can be controlled by a quarter-wave resonator mainly through reducing the amplitude of target acoustic mode, rather than increasing damping capacity of the chamber. Major damping mechanism of the resonator is cutting down pressure peak of target acoustic mode and raising up its pressure trough (CPRT); therefore the amplitude of target acoustic mode is reduced significantly. Moreover, acoustic energy can be dissipated by vortex at the orifice and by viscosity on the surface of a resonator, which increase damping capacity of the chamber slightly. Under the condition with multi-modes pressure oscillations, a resonator can still suppress pressure oscillations of target acoustic mode through CPRT. However, it may enhance pressure oscillations of other modes due to redistribution of oscillation energy among all acoustic modes.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-019-1575-6</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7321 |
ispartof | Science China. Technological sciences, 2021-02, Vol.64 (2), p.375-386 |
issn | 1674-7321 1869-1900 |
language | eng |
recordid | cdi_proquest_journals_2485527402 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Acoustics Amplitudes Computational fluid dynamics Damping capacity Engineering Fast Fourier transformations Fourier transforms Mathematical models Orifices Pressure oscillations Resonant frequencies Resonators Reynolds averaged Navier-Stokes method Thrust chambers |
title | Numerical evaluation of acoustic characteristics of a thrust chamber with quarter-wave resonators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20evaluation%20of%20acoustic%20characteristics%20of%20a%20thrust%20chamber%20with%20quarter-wave%20resonators&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Qin,%20JianXiu&rft.date=2021-02-01&rft.volume=64&rft.issue=2&rft.spage=375&rft.epage=386&rft.pages=375-386&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-019-1575-6&rft_dat=%3Cproquest_cross%3E2485527402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485527402&rft_id=info:pmid/&rfr_iscdi=true |