Commercial Thermal Technologies for Desalination of Water from Renewable Energies: A State of the Art Review

Thermal desalination is yet a reliable technology in the treatment of brackish water and seawater; however, its demanding high energy requirements have lagged it compared to other non-thermal technologies such as reverse osmosis. This review provides an outline of the development and trends of the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2021-02, Vol.9 (2), p.262
Hauptverfasser: Feria-Díaz, Jhon, López-Méndez, María, Rodríguez-Miranda, Juan, Sandoval-Herazo, Luis, Correa-Mahecha, Felipe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermal desalination is yet a reliable technology in the treatment of brackish water and seawater; however, its demanding high energy requirements have lagged it compared to other non-thermal technologies such as reverse osmosis. This review provides an outline of the development and trends of the three most commercially used thermal or phase change technologies worldwide: Multi Effect Distillation (MED), Multi Stage Flash (MSF), and Vapor Compression Distillation (VCD). First, state of water stress suffered by regions with little fresh water availability and existing desalination technologies that could become an alternative solution are shown. The most recent studies published for each commercial thermal technology are presented, focusing on optimizing the desalination process, improving efficiencies, and reducing energy demands. Then, an overview of the use of renewable energy and its potential for integration into both commercial and non-commercial desalination systems is shown. Finally, research trends and their orientation towards hybridization of technologies and use of renewable energies as a relevant alternative to the current problems of brackish water desalination are discussed. This reflective and updated review will help researchers to have a detailed state of the art of the subject and to have a starting point for their research, since current advances and trends on thermal desalination are shown.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr9020262