Stability study of a model for the Klein-Gordon equation in Kerr space-time II

The present paper is a follow-up of our previous paper that derives a slightly simplified model equation for the Klein-Gordon equation, describing the propagation of a scalar field of mass \(\mu\) in the background of a rotating black hole and, among others, supports the instability of the field dow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-02
Hauptverfasser: Horst Reinhard Beyer, Alcubierre, Miguel, Megevand, Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Horst Reinhard Beyer
Alcubierre, Miguel
Megevand, Miguel
description The present paper is a follow-up of our previous paper that derives a slightly simplified model equation for the Klein-Gordon equation, describing the propagation of a scalar field of mass \(\mu\) in the background of a rotating black hole and, among others, supports the instability of the field down to \(a/M \approx 0.97\). The latter result was derived numerically. This paper gives corresponding rigorous results, supporting instability of the field down to \(a/M \approx 0.979796\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2485339780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485339780</sourcerecordid><originalsourceid>FETCH-proquest_journals_24853397803</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOA6EJPW1rX4KYIb3ZdoXzElTdp8Fr29XXgAVzMwsyAJF2JHy4zzFUm97xhjfF_wPBcJuT-CfCmtwgQ-xGYC24KE3jaoobUOwgfhplEZerGusQZwjDKoWZSBGzoHfpBvpEH1CFW1IctWao_pj2uyPZ-exysdnB0j-lB3Njozp5pnZS7EoSiZ-O_6AmfUPUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485339780</pqid></control><display><type>article</type><title>Stability study of a model for the Klein-Gordon equation in Kerr space-time II</title><source>Free E- Journals</source><creator>Horst Reinhard Beyer ; Alcubierre, Miguel ; Megevand, Miguel</creator><creatorcontrib>Horst Reinhard Beyer ; Alcubierre, Miguel ; Megevand, Miguel</creatorcontrib><description>The present paper is a follow-up of our previous paper that derives a slightly simplified model equation for the Klein-Gordon equation, describing the propagation of a scalar field of mass \(\mu\) in the background of a rotating black hole and, among others, supports the instability of the field down to \(a/M \approx 0.97\). The latter result was derived numerically. This paper gives corresponding rigorous results, supporting instability of the field down to \(a/M \approx 0.979796\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Klein-Gordon equation ; Scalars</subject><ispartof>arXiv.org, 2021-02</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Horst Reinhard Beyer</creatorcontrib><creatorcontrib>Alcubierre, Miguel</creatorcontrib><creatorcontrib>Megevand, Miguel</creatorcontrib><title>Stability study of a model for the Klein-Gordon equation in Kerr space-time II</title><title>arXiv.org</title><description>The present paper is a follow-up of our previous paper that derives a slightly simplified model equation for the Klein-Gordon equation, describing the propagation of a scalar field of mass \(\mu\) in the background of a rotating black hole and, among others, supports the instability of the field down to \(a/M \approx 0.97\). The latter result was derived numerically. This paper gives corresponding rigorous results, supporting instability of the field down to \(a/M \approx 0.979796\).</description><subject>Klein-Gordon equation</subject><subject>Scalars</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOA6EJPW1rX4KYIb3ZdoXzElTdp8Fr29XXgAVzMwsyAJF2JHy4zzFUm97xhjfF_wPBcJuT-CfCmtwgQ-xGYC24KE3jaoobUOwgfhplEZerGusQZwjDKoWZSBGzoHfpBvpEH1CFW1IctWao_pj2uyPZ-exysdnB0j-lB3Njozp5pnZS7EoSiZ-O_6AmfUPUY</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Horst Reinhard Beyer</creator><creator>Alcubierre, Miguel</creator><creator>Megevand, Miguel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210201</creationdate><title>Stability study of a model for the Klein-Gordon equation in Kerr space-time II</title><author>Horst Reinhard Beyer ; Alcubierre, Miguel ; Megevand, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24853397803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Klein-Gordon equation</topic><topic>Scalars</topic><toplevel>online_resources</toplevel><creatorcontrib>Horst Reinhard Beyer</creatorcontrib><creatorcontrib>Alcubierre, Miguel</creatorcontrib><creatorcontrib>Megevand, Miguel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horst Reinhard Beyer</au><au>Alcubierre, Miguel</au><au>Megevand, Miguel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stability study of a model for the Klein-Gordon equation in Kerr space-time II</atitle><jtitle>arXiv.org</jtitle><date>2021-02-01</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>The present paper is a follow-up of our previous paper that derives a slightly simplified model equation for the Klein-Gordon equation, describing the propagation of a scalar field of mass \(\mu\) in the background of a rotating black hole and, among others, supports the instability of the field down to \(a/M \approx 0.97\). The latter result was derived numerically. This paper gives corresponding rigorous results, supporting instability of the field down to \(a/M \approx 0.979796\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2485339780
source Free E- Journals
subjects Klein-Gordon equation
Scalars
title Stability study of a model for the Klein-Gordon equation in Kerr space-time II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stability%20study%20of%20a%20model%20for%20the%20Klein-Gordon%20equation%20in%20Kerr%20space-time%20II&rft.jtitle=arXiv.org&rft.au=Horst%20Reinhard%20Beyer&rft.date=2021-02-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2485339780%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485339780&rft_id=info:pmid/&rfr_iscdi=true