The tensor rank of 5x5 matrices multiplication is bounded by 98 and its border rank by 89

We present a non-commutative algorithm for the product of 3x5 by 5x5 matrices using 58 multiplications. This algorithm allows to construct a non-commutative algorithm for multiplying 5x5 (resp. 10x10, 15x15) matrices using 98 (resp. 686, 2088) multiplications. Furthermore, we describe an approximate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-02
Hauptverfasser: Sedoglavic, Alexandre, Smirnov, Alexey V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sedoglavic, Alexandre
Smirnov, Alexey V
description We present a non-commutative algorithm for the product of 3x5 by 5x5 matrices using 58 multiplications. This algorithm allows to construct a non-commutative algorithm for multiplying 5x5 (resp. 10x10, 15x15) matrices using 98 (resp. 686, 2088) multiplications. Furthermore, we describe an approximate algorithm that requires 89 multiplications and computes this product with an arbitrary small error.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2485327689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485327689</sourcerecordid><originalsourceid>FETCH-proquest_journals_24853276893</originalsourceid><addsrcrecordid>eNqNjN8KgjAcRkcQJOU7_KBrwTan8zqKHsCbrmS6SbO52f5AvX0GPkBXB77zcTYowYScMlZgvEOp92Oe57isMKUkQffmISFI460Dx80T7AD0TWHiwaleepiiDmrWqudBWQPKQ2ejEVJA94GaATcCVPitTsi1sRhWH9B24NrLdOUeHa-X5nzLZmdfUfrQjjY6s6gWF4wSXJWsJv-9vh0fQLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485327689</pqid></control><display><type>article</type><title>The tensor rank of 5x5 matrices multiplication is bounded by 98 and its border rank by 89</title><source>Free E- Journals</source><creator>Sedoglavic, Alexandre ; Smirnov, Alexey V</creator><creatorcontrib>Sedoglavic, Alexandre ; Smirnov, Alexey V</creatorcontrib><description>We present a non-commutative algorithm for the product of 3x5 by 5x5 matrices using 58 multiplications. This algorithm allows to construct a non-commutative algorithm for multiplying 5x5 (resp. 10x10, 15x15) matrices using 98 (resp. 686, 2088) multiplications. Furthermore, we describe an approximate algorithm that requires 89 multiplications and computes this product with an arbitrary small error.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Multiplication ; Tensors</subject><ispartof>arXiv.org, 2021-02</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Sedoglavic, Alexandre</creatorcontrib><creatorcontrib>Smirnov, Alexey V</creatorcontrib><title>The tensor rank of 5x5 matrices multiplication is bounded by 98 and its border rank by 89</title><title>arXiv.org</title><description>We present a non-commutative algorithm for the product of 3x5 by 5x5 matrices using 58 multiplications. This algorithm allows to construct a non-commutative algorithm for multiplying 5x5 (resp. 10x10, 15x15) matrices using 98 (resp. 686, 2088) multiplications. Furthermore, we describe an approximate algorithm that requires 89 multiplications and computes this product with an arbitrary small error.</description><subject>Algorithms</subject><subject>Multiplication</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjN8KgjAcRkcQJOU7_KBrwTan8zqKHsCbrmS6SbO52f5AvX0GPkBXB77zcTYowYScMlZgvEOp92Oe57isMKUkQffmISFI460Dx80T7AD0TWHiwaleepiiDmrWqudBWQPKQ2ejEVJA94GaATcCVPitTsi1sRhWH9B24NrLdOUeHa-X5nzLZmdfUfrQjjY6s6gWF4wSXJWsJv-9vh0fQLE</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Sedoglavic, Alexandre</creator><creator>Smirnov, Alexey V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210201</creationdate><title>The tensor rank of 5x5 matrices multiplication is bounded by 98 and its border rank by 89</title><author>Sedoglavic, Alexandre ; Smirnov, Alexey V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24853276893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Multiplication</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Sedoglavic, Alexandre</creatorcontrib><creatorcontrib>Smirnov, Alexey V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sedoglavic, Alexandre</au><au>Smirnov, Alexey V</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The tensor rank of 5x5 matrices multiplication is bounded by 98 and its border rank by 89</atitle><jtitle>arXiv.org</jtitle><date>2021-02-01</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We present a non-commutative algorithm for the product of 3x5 by 5x5 matrices using 58 multiplications. This algorithm allows to construct a non-commutative algorithm for multiplying 5x5 (resp. 10x10, 15x15) matrices using 98 (resp. 686, 2088) multiplications. Furthermore, we describe an approximate algorithm that requires 89 multiplications and computes this product with an arbitrary small error.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2485327689
source Free E- Journals
subjects Algorithms
Multiplication
Tensors
title The tensor rank of 5x5 matrices multiplication is bounded by 98 and its border rank by 89
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20tensor%20rank%20of%205x5%20matrices%20multiplication%20is%20bounded%20by%2098%20and%20its%20border%20rank%20by%2089&rft.jtitle=arXiv.org&rft.au=Sedoglavic,%20Alexandre&rft.date=2021-02-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2485327689%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485327689&rft_id=info:pmid/&rfr_iscdi=true