Determination of the time-dependent thermal grooving coefficient

Changes in morphology of a polycrystalline material may occur through interface motion under the action of a driving force. An important special case that is considered in this paper is the thermal grooving that occurs when a grain boundary intersects the flat surface of a recently solidified metal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2021-02, Vol.65 (1-2), p.199-221
Hauptverfasser: Cao, Kai, Lesnic, Daniel, Ismailov, Mansur I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221
container_issue 1-2
container_start_page 199
container_title Journal of applied mathematics & computing
container_volume 65
creator Cao, Kai
Lesnic, Daniel
Ismailov, Mansur I.
description Changes in morphology of a polycrystalline material may occur through interface motion under the action of a driving force. An important special case that is considered in this paper is the thermal grooving that occurs when a grain boundary intersects the flat surface of a recently solidified metal slab giving rise to the formation of a thin symmetric groove. In case the transient surface diffusion is the main forming mechanism this yields a fourth-order time-dependent partial differential equation with unknown time-dependent surface diffusivity. In order to determine it, the profile of the free grooving surface at a fixed location is recorded in time. The grooving boundaries are supported by self-adjoint boundary conditions. We provide sufficient conditions on the input data for which the resulting coefficient identification problem is proved to be well-posed. Furthermore, we develop a predictor–corrector finite-difference spline method for obtaining an accurate and stable numerical solution to the nonlinear coefficient identification problem. Numerical results illustrate the performance of the inversion of both exact and noisy data.
doi_str_mv 10.1007/s12190-020-01388-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2485018940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485018940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a4074d0c3217c8bda4fff055004b863ff86c2e5cb04833d3dbcbf81745414b133</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOC5-hkk2yyN6VaFQpe9Bx2s0lN6SY1SQX_vakrePMwzDDz3hv4ELokcE0AxE0iNWkBQ12KUCmxOEIzIhuOa5D8uMy8lZiXxSk6S2kD0IgW2hm6vTfZxNH5Lrvgq2Cr_G6q7EaDB7MzfjA-H1Zx7LbVOobw6fy60sFY67Qrx3N0YrttMhe_fY7elg-viye8enl8XtytsKakzbhjINgAmtZEaNkPHbPWAucArJcNtVY2ujZc98AkpQMdet1bSQTjjLCeUDpHV1PuLoaPvUlZbcI--vJS1UxyILJlUFT1pNIxpBSNVbvoxi5-KQLqQEpNpFQhpX5IKVFMdDKlIvZrE_-i_3F9A2Xha28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485018940</pqid></control><display><type>article</type><title>Determination of the time-dependent thermal grooving coefficient</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cao, Kai ; Lesnic, Daniel ; Ismailov, Mansur I.</creator><creatorcontrib>Cao, Kai ; Lesnic, Daniel ; Ismailov, Mansur I.</creatorcontrib><description>Changes in morphology of a polycrystalline material may occur through interface motion under the action of a driving force. An important special case that is considered in this paper is the thermal grooving that occurs when a grain boundary intersects the flat surface of a recently solidified metal slab giving rise to the formation of a thin symmetric groove. In case the transient surface diffusion is the main forming mechanism this yields a fourth-order time-dependent partial differential equation with unknown time-dependent surface diffusivity. In order to determine it, the profile of the free grooving surface at a fixed location is recorded in time. The grooving boundaries are supported by self-adjoint boundary conditions. We provide sufficient conditions on the input data for which the resulting coefficient identification problem is proved to be well-posed. Furthermore, we develop a predictor–corrector finite-difference spline method for obtaining an accurate and stable numerical solution to the nonlinear coefficient identification problem. Numerical results illustrate the performance of the inversion of both exact and noisy data.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-020-01388-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied mathematics ; Boundary conditions ; Coefficients ; Computational Mathematics and Numerical Analysis ; Finite difference method ; Flat surfaces ; Grain boundaries ; Grooves ; Grooving ; Mathematical and Computational Engineering ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Morphology ; Original Research ; Partial differential equations ; Surface diffusion ; Theory of Computation ; Time dependence</subject><ispartof>Journal of applied mathematics &amp; computing, 2021-02, Vol.65 (1-2), p.199-221</ispartof><rights>Korean Society for Informatics and Computational Applied Mathematics 2020</rights><rights>Korean Society for Informatics and Computational Applied Mathematics 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a4074d0c3217c8bda4fff055004b863ff86c2e5cb04833d3dbcbf81745414b133</citedby><cites>FETCH-LOGICAL-c319t-a4074d0c3217c8bda4fff055004b863ff86c2e5cb04833d3dbcbf81745414b133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-020-01388-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-020-01388-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Cao, Kai</creatorcontrib><creatorcontrib>Lesnic, Daniel</creatorcontrib><creatorcontrib>Ismailov, Mansur I.</creatorcontrib><title>Determination of the time-dependent thermal grooving coefficient</title><title>Journal of applied mathematics &amp; computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>Changes in morphology of a polycrystalline material may occur through interface motion under the action of a driving force. An important special case that is considered in this paper is the thermal grooving that occurs when a grain boundary intersects the flat surface of a recently solidified metal slab giving rise to the formation of a thin symmetric groove. In case the transient surface diffusion is the main forming mechanism this yields a fourth-order time-dependent partial differential equation with unknown time-dependent surface diffusivity. In order to determine it, the profile of the free grooving surface at a fixed location is recorded in time. The grooving boundaries are supported by self-adjoint boundary conditions. We provide sufficient conditions on the input data for which the resulting coefficient identification problem is proved to be well-posed. Furthermore, we develop a predictor–corrector finite-difference spline method for obtaining an accurate and stable numerical solution to the nonlinear coefficient identification problem. Numerical results illustrate the performance of the inversion of both exact and noisy data.</description><subject>Applied mathematics</subject><subject>Boundary conditions</subject><subject>Coefficients</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Finite difference method</subject><subject>Flat surfaces</subject><subject>Grain boundaries</subject><subject>Grooves</subject><subject>Grooving</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Morphology</subject><subject>Original Research</subject><subject>Partial differential equations</subject><subject>Surface diffusion</subject><subject>Theory of Computation</subject><subject>Time dependence</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wNOC5-hkk2yyN6VaFQpe9Bx2s0lN6SY1SQX_vakrePMwzDDz3hv4ELokcE0AxE0iNWkBQ12KUCmxOEIzIhuOa5D8uMy8lZiXxSk6S2kD0IgW2hm6vTfZxNH5Lrvgq2Cr_G6q7EaDB7MzfjA-H1Zx7LbVOobw6fy60sFY67Qrx3N0YrttMhe_fY7elg-viye8enl8XtytsKakzbhjINgAmtZEaNkPHbPWAucArJcNtVY2ujZc98AkpQMdet1bSQTjjLCeUDpHV1PuLoaPvUlZbcI--vJS1UxyILJlUFT1pNIxpBSNVbvoxi5-KQLqQEpNpFQhpX5IKVFMdDKlIvZrE_-i_3F9A2Xha28</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Cao, Kai</creator><creator>Lesnic, Daniel</creator><creator>Ismailov, Mansur I.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210201</creationdate><title>Determination of the time-dependent thermal grooving coefficient</title><author>Cao, Kai ; Lesnic, Daniel ; Ismailov, Mansur I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a4074d0c3217c8bda4fff055004b863ff86c2e5cb04833d3dbcbf81745414b133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied mathematics</topic><topic>Boundary conditions</topic><topic>Coefficients</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Finite difference method</topic><topic>Flat surfaces</topic><topic>Grain boundaries</topic><topic>Grooves</topic><topic>Grooving</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Morphology</topic><topic>Original Research</topic><topic>Partial differential equations</topic><topic>Surface diffusion</topic><topic>Theory of Computation</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Kai</creatorcontrib><creatorcontrib>Lesnic, Daniel</creatorcontrib><creatorcontrib>Ismailov, Mansur I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied mathematics &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Kai</au><au>Lesnic, Daniel</au><au>Ismailov, Mansur I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the time-dependent thermal grooving coefficient</atitle><jtitle>Journal of applied mathematics &amp; computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>65</volume><issue>1-2</issue><spage>199</spage><epage>221</epage><pages>199-221</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>Changes in morphology of a polycrystalline material may occur through interface motion under the action of a driving force. An important special case that is considered in this paper is the thermal grooving that occurs when a grain boundary intersects the flat surface of a recently solidified metal slab giving rise to the formation of a thin symmetric groove. In case the transient surface diffusion is the main forming mechanism this yields a fourth-order time-dependent partial differential equation with unknown time-dependent surface diffusivity. In order to determine it, the profile of the free grooving surface at a fixed location is recorded in time. The grooving boundaries are supported by self-adjoint boundary conditions. We provide sufficient conditions on the input data for which the resulting coefficient identification problem is proved to be well-posed. Furthermore, we develop a predictor–corrector finite-difference spline method for obtaining an accurate and stable numerical solution to the nonlinear coefficient identification problem. Numerical results illustrate the performance of the inversion of both exact and noisy data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12190-020-01388-7</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1598-5865
ispartof Journal of applied mathematics & computing, 2021-02, Vol.65 (1-2), p.199-221
issn 1598-5865
1865-2085
language eng
recordid cdi_proquest_journals_2485018940
source SpringerLink Journals - AutoHoldings
subjects Applied mathematics
Boundary conditions
Coefficients
Computational Mathematics and Numerical Analysis
Finite difference method
Flat surfaces
Grain boundaries
Grooves
Grooving
Mathematical and Computational Engineering
Mathematics
Mathematics and Statistics
Mathematics of Computing
Morphology
Original Research
Partial differential equations
Surface diffusion
Theory of Computation
Time dependence
title Determination of the time-dependent thermal grooving coefficient
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20time-dependent%20thermal%20grooving%20coefficient&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Cao,%20Kai&rft.date=2021-02-01&rft.volume=65&rft.issue=1-2&rft.spage=199&rft.epage=221&rft.pages=199-221&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-020-01388-7&rft_dat=%3Cproquest_cross%3E2485018940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485018940&rft_id=info:pmid/&rfr_iscdi=true