Determination of the time-dependent thermal grooving coefficient
Changes in morphology of a polycrystalline material may occur through interface motion under the action of a driving force. An important special case that is considered in this paper is the thermal grooving that occurs when a grain boundary intersects the flat surface of a recently solidified metal...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics & computing 2021-02, Vol.65 (1-2), p.199-221 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 221 |
---|---|
container_issue | 1-2 |
container_start_page | 199 |
container_title | Journal of applied mathematics & computing |
container_volume | 65 |
creator | Cao, Kai Lesnic, Daniel Ismailov, Mansur I. |
description | Changes in morphology of a polycrystalline material may occur through interface motion under the action of a driving force. An important special case that is considered in this paper is the thermal grooving that occurs when a grain boundary intersects the flat surface of a recently solidified metal slab giving rise to the formation of a thin symmetric groove. In case the transient surface diffusion is the main forming mechanism this yields a fourth-order time-dependent partial differential equation with unknown time-dependent surface diffusivity. In order to determine it, the profile of the free grooving surface at a fixed location is recorded in time. The grooving boundaries are supported by self-adjoint boundary conditions. We provide sufficient conditions on the input data for which the resulting coefficient identification problem is proved to be well-posed. Furthermore, we develop a predictor–corrector finite-difference spline method for obtaining an accurate and stable numerical solution to the nonlinear coefficient identification problem. Numerical results illustrate the performance of the inversion of both exact and noisy data. |
doi_str_mv | 10.1007/s12190-020-01388-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2485018940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485018940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a4074d0c3217c8bda4fff055004b863ff86c2e5cb04833d3dbcbf81745414b133</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOC5-hkk2yyN6VaFQpe9Bx2s0lN6SY1SQX_vakrePMwzDDz3hv4ELokcE0AxE0iNWkBQ12KUCmxOEIzIhuOa5D8uMy8lZiXxSk6S2kD0IgW2hm6vTfZxNH5Lrvgq2Cr_G6q7EaDB7MzfjA-H1Zx7LbVOobw6fy60sFY67Qrx3N0YrttMhe_fY7elg-viye8enl8XtytsKakzbhjINgAmtZEaNkPHbPWAucArJcNtVY2ujZc98AkpQMdet1bSQTjjLCeUDpHV1PuLoaPvUlZbcI--vJS1UxyILJlUFT1pNIxpBSNVbvoxi5-KQLqQEpNpFQhpX5IKVFMdDKlIvZrE_-i_3F9A2Xha28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485018940</pqid></control><display><type>article</type><title>Determination of the time-dependent thermal grooving coefficient</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cao, Kai ; Lesnic, Daniel ; Ismailov, Mansur I.</creator><creatorcontrib>Cao, Kai ; Lesnic, Daniel ; Ismailov, Mansur I.</creatorcontrib><description>Changes in morphology of a polycrystalline material may occur through interface motion under the action of a driving force. An important special case that is considered in this paper is the thermal grooving that occurs when a grain boundary intersects the flat surface of a recently solidified metal slab giving rise to the formation of a thin symmetric groove. In case the transient surface diffusion is the main forming mechanism this yields a fourth-order time-dependent partial differential equation with unknown time-dependent surface diffusivity. In order to determine it, the profile of the free grooving surface at a fixed location is recorded in time. The grooving boundaries are supported by self-adjoint boundary conditions. We provide sufficient conditions on the input data for which the resulting coefficient identification problem is proved to be well-posed. Furthermore, we develop a predictor–corrector finite-difference spline method for obtaining an accurate and stable numerical solution to the nonlinear coefficient identification problem. Numerical results illustrate the performance of the inversion of both exact and noisy data.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-020-01388-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied mathematics ; Boundary conditions ; Coefficients ; Computational Mathematics and Numerical Analysis ; Finite difference method ; Flat surfaces ; Grain boundaries ; Grooves ; Grooving ; Mathematical and Computational Engineering ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Morphology ; Original Research ; Partial differential equations ; Surface diffusion ; Theory of Computation ; Time dependence</subject><ispartof>Journal of applied mathematics & computing, 2021-02, Vol.65 (1-2), p.199-221</ispartof><rights>Korean Society for Informatics and Computational Applied Mathematics 2020</rights><rights>Korean Society for Informatics and Computational Applied Mathematics 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a4074d0c3217c8bda4fff055004b863ff86c2e5cb04833d3dbcbf81745414b133</citedby><cites>FETCH-LOGICAL-c319t-a4074d0c3217c8bda4fff055004b863ff86c2e5cb04833d3dbcbf81745414b133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-020-01388-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-020-01388-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Cao, Kai</creatorcontrib><creatorcontrib>Lesnic, Daniel</creatorcontrib><creatorcontrib>Ismailov, Mansur I.</creatorcontrib><title>Determination of the time-dependent thermal grooving coefficient</title><title>Journal of applied mathematics & computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>Changes in morphology of a polycrystalline material may occur through interface motion under the action of a driving force. An important special case that is considered in this paper is the thermal grooving that occurs when a grain boundary intersects the flat surface of a recently solidified metal slab giving rise to the formation of a thin symmetric groove. In case the transient surface diffusion is the main forming mechanism this yields a fourth-order time-dependent partial differential equation with unknown time-dependent surface diffusivity. In order to determine it, the profile of the free grooving surface at a fixed location is recorded in time. The grooving boundaries are supported by self-adjoint boundary conditions. We provide sufficient conditions on the input data for which the resulting coefficient identification problem is proved to be well-posed. Furthermore, we develop a predictor–corrector finite-difference spline method for obtaining an accurate and stable numerical solution to the nonlinear coefficient identification problem. Numerical results illustrate the performance of the inversion of both exact and noisy data.</description><subject>Applied mathematics</subject><subject>Boundary conditions</subject><subject>Coefficients</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Finite difference method</subject><subject>Flat surfaces</subject><subject>Grain boundaries</subject><subject>Grooves</subject><subject>Grooving</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Morphology</subject><subject>Original Research</subject><subject>Partial differential equations</subject><subject>Surface diffusion</subject><subject>Theory of Computation</subject><subject>Time dependence</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wNOC5-hkk2yyN6VaFQpe9Bx2s0lN6SY1SQX_vakrePMwzDDz3hv4ELokcE0AxE0iNWkBQ12KUCmxOEIzIhuOa5D8uMy8lZiXxSk6S2kD0IgW2hm6vTfZxNH5Lrvgq2Cr_G6q7EaDB7MzfjA-H1Zx7LbVOobw6fy60sFY67Qrx3N0YrttMhe_fY7elg-viye8enl8XtytsKakzbhjINgAmtZEaNkPHbPWAucArJcNtVY2ujZc98AkpQMdet1bSQTjjLCeUDpHV1PuLoaPvUlZbcI--vJS1UxyILJlUFT1pNIxpBSNVbvoxi5-KQLqQEpNpFQhpX5IKVFMdDKlIvZrE_-i_3F9A2Xha28</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Cao, Kai</creator><creator>Lesnic, Daniel</creator><creator>Ismailov, Mansur I.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210201</creationdate><title>Determination of the time-dependent thermal grooving coefficient</title><author>Cao, Kai ; Lesnic, Daniel ; Ismailov, Mansur I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a4074d0c3217c8bda4fff055004b863ff86c2e5cb04833d3dbcbf81745414b133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied mathematics</topic><topic>Boundary conditions</topic><topic>Coefficients</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Finite difference method</topic><topic>Flat surfaces</topic><topic>Grain boundaries</topic><topic>Grooves</topic><topic>Grooving</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Morphology</topic><topic>Original Research</topic><topic>Partial differential equations</topic><topic>Surface diffusion</topic><topic>Theory of Computation</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Kai</creatorcontrib><creatorcontrib>Lesnic, Daniel</creatorcontrib><creatorcontrib>Ismailov, Mansur I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied mathematics & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Kai</au><au>Lesnic, Daniel</au><au>Ismailov, Mansur I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the time-dependent thermal grooving coefficient</atitle><jtitle>Journal of applied mathematics & computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>65</volume><issue>1-2</issue><spage>199</spage><epage>221</epage><pages>199-221</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>Changes in morphology of a polycrystalline material may occur through interface motion under the action of a driving force. An important special case that is considered in this paper is the thermal grooving that occurs when a grain boundary intersects the flat surface of a recently solidified metal slab giving rise to the formation of a thin symmetric groove. In case the transient surface diffusion is the main forming mechanism this yields a fourth-order time-dependent partial differential equation with unknown time-dependent surface diffusivity. In order to determine it, the profile of the free grooving surface at a fixed location is recorded in time. The grooving boundaries are supported by self-adjoint boundary conditions. We provide sufficient conditions on the input data for which the resulting coefficient identification problem is proved to be well-posed. Furthermore, we develop a predictor–corrector finite-difference spline method for obtaining an accurate and stable numerical solution to the nonlinear coefficient identification problem. Numerical results illustrate the performance of the inversion of both exact and noisy data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12190-020-01388-7</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1598-5865 |
ispartof | Journal of applied mathematics & computing, 2021-02, Vol.65 (1-2), p.199-221 |
issn | 1598-5865 1865-2085 |
language | eng |
recordid | cdi_proquest_journals_2485018940 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied mathematics Boundary conditions Coefficients Computational Mathematics and Numerical Analysis Finite difference method Flat surfaces Grain boundaries Grooves Grooving Mathematical and Computational Engineering Mathematics Mathematics and Statistics Mathematics of Computing Morphology Original Research Partial differential equations Surface diffusion Theory of Computation Time dependence |
title | Determination of the time-dependent thermal grooving coefficient |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20time-dependent%20thermal%20grooving%20coefficient&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Cao,%20Kai&rft.date=2021-02-01&rft.volume=65&rft.issue=1-2&rft.spage=199&rft.epage=221&rft.pages=199-221&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-020-01388-7&rft_dat=%3Cproquest_cross%3E2485018940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485018940&rft_id=info:pmid/&rfr_iscdi=true |