Infinitely many solutions of Dirac equations with concave and convex nonlinearities

We consider non-periodic Dirac equations with nonlinearities which involve a combination of concave and convex terms. Using variational methods, we prove the existence of infinitely many large and small energy solutions. For small energy solutions, we establish a new critical point theorem which gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2021-02, Vol.72 (1), Article 39
Hauptverfasser: Ding, Yanheng, Dong, Xiaojing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 72
creator Ding, Yanheng
Dong, Xiaojing
description We consider non-periodic Dirac equations with nonlinearities which involve a combination of concave and convex terms. Using variational methods, we prove the existence of infinitely many large and small energy solutions. For small energy solutions, we establish a new critical point theorem which generalize the dual Fountain Theorem of Bartsch and Willen, by using the index theory and the P -topology. Some non-periodic conditions on the whole space R 3 are given in order to overcome the lack of compactness.
doi_str_mv 10.1007/s00033-021-01472-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2485018767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485018767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f1adf191c01744d225c794221e2edfca420645faf19067149e3bf61aac7a7b613</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA8-pMkt10j1K_CgUP6jmk2URT2qRNdqv9925dwZunGYbnnRkeQi4RrhFA3mQA4LwAhgWgkKzgR2SEgkFRA6-PyQhAiIIxWZ6Ss5yXPS4R-Ii8zILzwbd2tadrHfY0x1XX-hgyjY7e-aQNtdtOD6NP335QE4PRO0t1aA79zn7REMPKB6uTb73N5-TE6VW2F791TN4e7l-nT8X8-XE2vZ0XhmPdFg5147BGAyiFaBgrjawFY2iZbZzR_feVKJ3uGagkitryhatQayO1XFTIx-Rq2LtJcdvZ3Kpl7FLoTyomJiXgRFayp9hAmRRzTtapTfJrnfYKQR3kqUGe6uWpH3mK9yE-hHIPh3eb_lb_k_oGKs5yaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485018767</pqid></control><display><type>article</type><title>Infinitely many solutions of Dirac equations with concave and convex nonlinearities</title><source>Springer Nature - Complete Springer Journals</source><creator>Ding, Yanheng ; Dong, Xiaojing</creator><creatorcontrib>Ding, Yanheng ; Dong, Xiaojing</creatorcontrib><description>We consider non-periodic Dirac equations with nonlinearities which involve a combination of concave and convex terms. Using variational methods, we prove the existence of infinitely many large and small energy solutions. For small energy solutions, we establish a new critical point theorem which generalize the dual Fountain Theorem of Bartsch and Willen, by using the index theory and the P -topology. Some non-periodic conditions on the whole space R 3 are given in order to overcome the lack of compactness.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-021-01472-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Critical point ; Engineering ; Mathematical analysis ; Mathematical Methods in Physics ; Theorems ; Theoretical and Applied Mechanics ; Topology ; Variational methods</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2021-02, Vol.72 (1), Article 39</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f1adf191c01744d225c794221e2edfca420645faf19067149e3bf61aac7a7b613</citedby><cites>FETCH-LOGICAL-c319t-f1adf191c01744d225c794221e2edfca420645faf19067149e3bf61aac7a7b613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-021-01472-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-021-01472-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Ding, Yanheng</creatorcontrib><creatorcontrib>Dong, Xiaojing</creatorcontrib><title>Infinitely many solutions of Dirac equations with concave and convex nonlinearities</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>We consider non-periodic Dirac equations with nonlinearities which involve a combination of concave and convex terms. Using variational methods, we prove the existence of infinitely many large and small energy solutions. For small energy solutions, we establish a new critical point theorem which generalize the dual Fountain Theorem of Bartsch and Willen, by using the index theory and the P -topology. Some non-periodic conditions on the whole space R 3 are given in order to overcome the lack of compactness.</description><subject>Critical point</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Theorems</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology</subject><subject>Variational methods</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA8-pMkt10j1K_CgUP6jmk2URT2qRNdqv9925dwZunGYbnnRkeQi4RrhFA3mQA4LwAhgWgkKzgR2SEgkFRA6-PyQhAiIIxWZ6Ss5yXPS4R-Ii8zILzwbd2tadrHfY0x1XX-hgyjY7e-aQNtdtOD6NP335QE4PRO0t1aA79zn7REMPKB6uTb73N5-TE6VW2F791TN4e7l-nT8X8-XE2vZ0XhmPdFg5147BGAyiFaBgrjawFY2iZbZzR_feVKJ3uGagkitryhatQayO1XFTIx-Rq2LtJcdvZ3Kpl7FLoTyomJiXgRFayp9hAmRRzTtapTfJrnfYKQR3kqUGe6uWpH3mK9yE-hHIPh3eb_lb_k_oGKs5yaw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ding, Yanheng</creator><creator>Dong, Xiaojing</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>Infinitely many solutions of Dirac equations with concave and convex nonlinearities</title><author>Ding, Yanheng ; Dong, Xiaojing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f1adf191c01744d225c794221e2edfca420645faf19067149e3bf61aac7a7b613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Critical point</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Theorems</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yanheng</creatorcontrib><creatorcontrib>Dong, Xiaojing</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yanheng</au><au>Dong, Xiaojing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinitely many solutions of Dirac equations with concave and convex nonlinearities</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>72</volume><issue>1</issue><artnum>39</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>We consider non-periodic Dirac equations with nonlinearities which involve a combination of concave and convex terms. Using variational methods, we prove the existence of infinitely many large and small energy solutions. For small energy solutions, we establish a new critical point theorem which generalize the dual Fountain Theorem of Bartsch and Willen, by using the index theory and the P -topology. Some non-periodic conditions on the whole space R 3 are given in order to overcome the lack of compactness.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-021-01472-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2021-02, Vol.72 (1), Article 39
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_2485018767
source Springer Nature - Complete Springer Journals
subjects Critical point
Engineering
Mathematical analysis
Mathematical Methods in Physics
Theorems
Theoretical and Applied Mechanics
Topology
Variational methods
title Infinitely many solutions of Dirac equations with concave and convex nonlinearities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinitely%20many%20solutions%20of%20Dirac%20equations%20with%20concave%20and%20convex%20nonlinearities&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Ding,%20Yanheng&rft.date=2021-02-01&rft.volume=72&rft.issue=1&rft.artnum=39&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-021-01472-3&rft_dat=%3Cproquest_cross%3E2485018767%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485018767&rft_id=info:pmid/&rfr_iscdi=true