Mathematical modeling of stagnation region nanofluid flow through Darcy–Forchheimer space taking into account inconsistent heat source/sink

The primary target of present research is to examine the application of OHAM (optimal homotopy asymptotic method) for a nanofluid transport through Darcy Forchheimer space toward the stagnation region by comparing stretching and straining forces. The porous matrix is suspended with nanofluid, and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2021-02, Vol.65 (1-2), p.713-734
Hauptverfasser: Kumar, Rakesh, Kumar, Ravinder, Sharma, Tanya, Sheikholeslami, Mohsen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 734
container_issue 1-2
container_start_page 713
container_title Journal of applied mathematics & computing
container_volume 65
creator Kumar, Rakesh
Kumar, Ravinder
Sharma, Tanya
Sheikholeslami, Mohsen
description The primary target of present research is to examine the application of OHAM (optimal homotopy asymptotic method) for a nanofluid transport through Darcy Forchheimer space toward the stagnation region by comparing stretching and straining forces. The porous matrix is suspended with nanofluid, and the flow field is under inconsistent heat source/sink influence. The solutions of guiding boundary layer equations report that pattern of primary velocity profiles are inverted by stagnation region flow strength. Straightforward relation of Forchheimer number with heat transfer has also been observed when stagnation forces dominate stretching forces. The novelty of present article lies in vector form presentation to OHAM and in the comparative analysis of stretching and straining forces.
doi_str_mv 10.1007/s12190-020-01412-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2485018268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485018268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-45aa1fd8e98357f098d2ffe3bc3544403313925641ee24f64901a290ada844983</originalsourceid><addsrcrecordid>eNp9UMFO3DAQjaoilVJ-gJOlnsPajp21j9UWaKVFXNqzNTjjJJC1t7aj1d74AU79w35JvSwSNw6jmTd6783oVdUFo5eM0uUiMc40rSkvxQTj9e5DdcpUK2tOlfxYZqlVLcviU_U5pQdK26Wm-rR6voU84AbyaGEim9DhNPqeBEdSht6XffAkYn9oHnxw0zx2xE1hR_IQw9wP5DtEu__39Pc6RDsMOG4wkrQFiyTD48Fs9DkQsDbMPhdgg09jyljAgJBJCnO0uEijf_xSnTiYEp6_9rPq9_XVr9WPen1383P1bV3bhulcCwnAXKdQq0YuHdWq485hc28bKYSgTcMazWUrGCIXrhWaMuCaQgdKiCI6q74efbcx_JkxZfNQnvDlpOFCScoUbw8sfmTZGFKK6Mw2jhuIe8OoOcRujrGbErt5id3siqg5ilIh-x7jm_U7qv_Twom6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485018268</pqid></control><display><type>article</type><title>Mathematical modeling of stagnation region nanofluid flow through Darcy–Forchheimer space taking into account inconsistent heat source/sink</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kumar, Rakesh ; Kumar, Ravinder ; Sharma, Tanya ; Sheikholeslami, Mohsen</creator><creatorcontrib>Kumar, Rakesh ; Kumar, Ravinder ; Sharma, Tanya ; Sheikholeslami, Mohsen</creatorcontrib><description>The primary target of present research is to examine the application of OHAM (optimal homotopy asymptotic method) for a nanofluid transport through Darcy Forchheimer space toward the stagnation region by comparing stretching and straining forces. The porous matrix is suspended with nanofluid, and the flow field is under inconsistent heat source/sink influence. The solutions of guiding boundary layer equations report that pattern of primary velocity profiles are inverted by stagnation region flow strength. Straightforward relation of Forchheimer number with heat transfer has also been observed when stagnation forces dominate stretching forces. The novelty of present article lies in vector form presentation to OHAM and in the comparative analysis of stretching and straining forces.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-020-01412-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied mathematics ; Asymptotic methods ; Boundary layer equations ; Computational fluid dynamics ; Computational Mathematics and Numerical Analysis ; Fluid flow ; Mathematical and Computational Engineering ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Matrix methods ; Nanofluids ; Original Research ; Porous media ; Stagnation point ; Stretching ; Theory of Computation ; Velocity distribution</subject><ispartof>Journal of applied mathematics &amp; computing, 2021-02, Vol.65 (1-2), p.713-734</ispartof><rights>Korean Society for Informatics and Computational Applied Mathematics 2020</rights><rights>Korean Society for Informatics and Computational Applied Mathematics 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-45aa1fd8e98357f098d2ffe3bc3544403313925641ee24f64901a290ada844983</citedby><cites>FETCH-LOGICAL-c319t-45aa1fd8e98357f098d2ffe3bc3544403313925641ee24f64901a290ada844983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-020-01412-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-020-01412-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kumar, Rakesh</creatorcontrib><creatorcontrib>Kumar, Ravinder</creatorcontrib><creatorcontrib>Sharma, Tanya</creatorcontrib><creatorcontrib>Sheikholeslami, Mohsen</creatorcontrib><title>Mathematical modeling of stagnation region nanofluid flow through Darcy–Forchheimer space taking into account inconsistent heat source/sink</title><title>Journal of applied mathematics &amp; computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>The primary target of present research is to examine the application of OHAM (optimal homotopy asymptotic method) for a nanofluid transport through Darcy Forchheimer space toward the stagnation region by comparing stretching and straining forces. The porous matrix is suspended with nanofluid, and the flow field is under inconsistent heat source/sink influence. The solutions of guiding boundary layer equations report that pattern of primary velocity profiles are inverted by stagnation region flow strength. Straightforward relation of Forchheimer number with heat transfer has also been observed when stagnation forces dominate stretching forces. The novelty of present article lies in vector form presentation to OHAM and in the comparative analysis of stretching and straining forces.</description><subject>Applied mathematics</subject><subject>Asymptotic methods</subject><subject>Boundary layer equations</subject><subject>Computational fluid dynamics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Fluid flow</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Matrix methods</subject><subject>Nanofluids</subject><subject>Original Research</subject><subject>Porous media</subject><subject>Stagnation point</subject><subject>Stretching</subject><subject>Theory of Computation</subject><subject>Velocity distribution</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMFO3DAQjaoilVJ-gJOlnsPajp21j9UWaKVFXNqzNTjjJJC1t7aj1d74AU79w35JvSwSNw6jmTd6783oVdUFo5eM0uUiMc40rSkvxQTj9e5DdcpUK2tOlfxYZqlVLcviU_U5pQdK26Wm-rR6voU84AbyaGEim9DhNPqeBEdSht6XffAkYn9oHnxw0zx2xE1hR_IQw9wP5DtEu__39Pc6RDsMOG4wkrQFiyTD48Fs9DkQsDbMPhdgg09jyljAgJBJCnO0uEijf_xSnTiYEp6_9rPq9_XVr9WPen1383P1bV3bhulcCwnAXKdQq0YuHdWq485hc28bKYSgTcMazWUrGCIXrhWaMuCaQgdKiCI6q74efbcx_JkxZfNQnvDlpOFCScoUbw8sfmTZGFKK6Mw2jhuIe8OoOcRujrGbErt5id3siqg5ilIh-x7jm_U7qv_Twom6</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Kumar, Rakesh</creator><creator>Kumar, Ravinder</creator><creator>Sharma, Tanya</creator><creator>Sheikholeslami, Mohsen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210201</creationdate><title>Mathematical modeling of stagnation region nanofluid flow through Darcy–Forchheimer space taking into account inconsistent heat source/sink</title><author>Kumar, Rakesh ; Kumar, Ravinder ; Sharma, Tanya ; Sheikholeslami, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-45aa1fd8e98357f098d2ffe3bc3544403313925641ee24f64901a290ada844983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied mathematics</topic><topic>Asymptotic methods</topic><topic>Boundary layer equations</topic><topic>Computational fluid dynamics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Fluid flow</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Matrix methods</topic><topic>Nanofluids</topic><topic>Original Research</topic><topic>Porous media</topic><topic>Stagnation point</topic><topic>Stretching</topic><topic>Theory of Computation</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Rakesh</creatorcontrib><creatorcontrib>Kumar, Ravinder</creatorcontrib><creatorcontrib>Sharma, Tanya</creatorcontrib><creatorcontrib>Sheikholeslami, Mohsen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied mathematics &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Rakesh</au><au>Kumar, Ravinder</au><au>Sharma, Tanya</au><au>Sheikholeslami, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling of stagnation region nanofluid flow through Darcy–Forchheimer space taking into account inconsistent heat source/sink</atitle><jtitle>Journal of applied mathematics &amp; computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>65</volume><issue>1-2</issue><spage>713</spage><epage>734</epage><pages>713-734</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>The primary target of present research is to examine the application of OHAM (optimal homotopy asymptotic method) for a nanofluid transport through Darcy Forchheimer space toward the stagnation region by comparing stretching and straining forces. The porous matrix is suspended with nanofluid, and the flow field is under inconsistent heat source/sink influence. The solutions of guiding boundary layer equations report that pattern of primary velocity profiles are inverted by stagnation region flow strength. Straightforward relation of Forchheimer number with heat transfer has also been observed when stagnation forces dominate stretching forces. The novelty of present article lies in vector form presentation to OHAM and in the comparative analysis of stretching and straining forces.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12190-020-01412-w</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1598-5865
ispartof Journal of applied mathematics & computing, 2021-02, Vol.65 (1-2), p.713-734
issn 1598-5865
1865-2085
language eng
recordid cdi_proquest_journals_2485018268
source SpringerLink Journals - AutoHoldings
subjects Applied mathematics
Asymptotic methods
Boundary layer equations
Computational fluid dynamics
Computational Mathematics and Numerical Analysis
Fluid flow
Mathematical and Computational Engineering
Mathematics
Mathematics and Statistics
Mathematics of Computing
Matrix methods
Nanofluids
Original Research
Porous media
Stagnation point
Stretching
Theory of Computation
Velocity distribution
title Mathematical modeling of stagnation region nanofluid flow through Darcy–Forchheimer space taking into account inconsistent heat source/sink
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20of%20stagnation%20region%20nanofluid%20flow%20through%20Darcy%E2%80%93Forchheimer%20space%20taking%20into%20account%20inconsistent%20heat%20source/sink&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Kumar,%20Rakesh&rft.date=2021-02-01&rft.volume=65&rft.issue=1-2&rft.spage=713&rft.epage=734&rft.pages=713-734&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-020-01412-w&rft_dat=%3Cproquest_cross%3E2485018268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485018268&rft_id=info:pmid/&rfr_iscdi=true