Mathematical modeling of stagnation region nanofluid flow through Darcy–Forchheimer space taking into account inconsistent heat source/sink
The primary target of present research is to examine the application of OHAM (optimal homotopy asymptotic method) for a nanofluid transport through Darcy Forchheimer space toward the stagnation region by comparing stretching and straining forces. The porous matrix is suspended with nanofluid, and th...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics & computing 2021-02, Vol.65 (1-2), p.713-734 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 734 |
---|---|
container_issue | 1-2 |
container_start_page | 713 |
container_title | Journal of applied mathematics & computing |
container_volume | 65 |
creator | Kumar, Rakesh Kumar, Ravinder Sharma, Tanya Sheikholeslami, Mohsen |
description | The primary target of present research is to examine the application of OHAM (optimal homotopy asymptotic method) for a nanofluid transport through Darcy Forchheimer space toward the stagnation region by comparing stretching and straining forces. The porous matrix is suspended with nanofluid, and the flow field is under inconsistent heat source/sink influence. The solutions of guiding boundary layer equations report that pattern of primary velocity profiles are inverted by stagnation region flow strength. Straightforward relation of Forchheimer number with heat transfer has also been observed when stagnation forces dominate stretching forces. The novelty of present article lies in vector form presentation to OHAM and in the comparative analysis of stretching and straining forces. |
doi_str_mv | 10.1007/s12190-020-01412-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2485018268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485018268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-45aa1fd8e98357f098d2ffe3bc3544403313925641ee24f64901a290ada844983</originalsourceid><addsrcrecordid>eNp9UMFO3DAQjaoilVJ-gJOlnsPajp21j9UWaKVFXNqzNTjjJJC1t7aj1d74AU79w35JvSwSNw6jmTd6783oVdUFo5eM0uUiMc40rSkvxQTj9e5DdcpUK2tOlfxYZqlVLcviU_U5pQdK26Wm-rR6voU84AbyaGEim9DhNPqeBEdSht6XffAkYn9oHnxw0zx2xE1hR_IQw9wP5DtEu__39Pc6RDsMOG4wkrQFiyTD48Fs9DkQsDbMPhdgg09jyljAgJBJCnO0uEijf_xSnTiYEp6_9rPq9_XVr9WPen1383P1bV3bhulcCwnAXKdQq0YuHdWq485hc28bKYSgTcMazWUrGCIXrhWaMuCaQgdKiCI6q74efbcx_JkxZfNQnvDlpOFCScoUbw8sfmTZGFKK6Mw2jhuIe8OoOcRujrGbErt5id3siqg5ilIh-x7jm_U7qv_Twom6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485018268</pqid></control><display><type>article</type><title>Mathematical modeling of stagnation region nanofluid flow through Darcy–Forchheimer space taking into account inconsistent heat source/sink</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kumar, Rakesh ; Kumar, Ravinder ; Sharma, Tanya ; Sheikholeslami, Mohsen</creator><creatorcontrib>Kumar, Rakesh ; Kumar, Ravinder ; Sharma, Tanya ; Sheikholeslami, Mohsen</creatorcontrib><description>The primary target of present research is to examine the application of OHAM (optimal homotopy asymptotic method) for a nanofluid transport through Darcy Forchheimer space toward the stagnation region by comparing stretching and straining forces. The porous matrix is suspended with nanofluid, and the flow field is under inconsistent heat source/sink influence. The solutions of guiding boundary layer equations report that pattern of primary velocity profiles are inverted by stagnation region flow strength. Straightforward relation of Forchheimer number with heat transfer has also been observed when stagnation forces dominate stretching forces. The novelty of present article lies in vector form presentation to OHAM and in the comparative analysis of stretching and straining forces.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-020-01412-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied mathematics ; Asymptotic methods ; Boundary layer equations ; Computational fluid dynamics ; Computational Mathematics and Numerical Analysis ; Fluid flow ; Mathematical and Computational Engineering ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Matrix methods ; Nanofluids ; Original Research ; Porous media ; Stagnation point ; Stretching ; Theory of Computation ; Velocity distribution</subject><ispartof>Journal of applied mathematics & computing, 2021-02, Vol.65 (1-2), p.713-734</ispartof><rights>Korean Society for Informatics and Computational Applied Mathematics 2020</rights><rights>Korean Society for Informatics and Computational Applied Mathematics 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-45aa1fd8e98357f098d2ffe3bc3544403313925641ee24f64901a290ada844983</citedby><cites>FETCH-LOGICAL-c319t-45aa1fd8e98357f098d2ffe3bc3544403313925641ee24f64901a290ada844983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-020-01412-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-020-01412-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kumar, Rakesh</creatorcontrib><creatorcontrib>Kumar, Ravinder</creatorcontrib><creatorcontrib>Sharma, Tanya</creatorcontrib><creatorcontrib>Sheikholeslami, Mohsen</creatorcontrib><title>Mathematical modeling of stagnation region nanofluid flow through Darcy–Forchheimer space taking into account inconsistent heat source/sink</title><title>Journal of applied mathematics & computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>The primary target of present research is to examine the application of OHAM (optimal homotopy asymptotic method) for a nanofluid transport through Darcy Forchheimer space toward the stagnation region by comparing stretching and straining forces. The porous matrix is suspended with nanofluid, and the flow field is under inconsistent heat source/sink influence. The solutions of guiding boundary layer equations report that pattern of primary velocity profiles are inverted by stagnation region flow strength. Straightforward relation of Forchheimer number with heat transfer has also been observed when stagnation forces dominate stretching forces. The novelty of present article lies in vector form presentation to OHAM and in the comparative analysis of stretching and straining forces.</description><subject>Applied mathematics</subject><subject>Asymptotic methods</subject><subject>Boundary layer equations</subject><subject>Computational fluid dynamics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Fluid flow</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Matrix methods</subject><subject>Nanofluids</subject><subject>Original Research</subject><subject>Porous media</subject><subject>Stagnation point</subject><subject>Stretching</subject><subject>Theory of Computation</subject><subject>Velocity distribution</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMFO3DAQjaoilVJ-gJOlnsPajp21j9UWaKVFXNqzNTjjJJC1t7aj1d74AU79w35JvSwSNw6jmTd6783oVdUFo5eM0uUiMc40rSkvxQTj9e5DdcpUK2tOlfxYZqlVLcviU_U5pQdK26Wm-rR6voU84AbyaGEim9DhNPqeBEdSht6XffAkYn9oHnxw0zx2xE1hR_IQw9wP5DtEu__39Pc6RDsMOG4wkrQFiyTD48Fs9DkQsDbMPhdgg09jyljAgJBJCnO0uEijf_xSnTiYEp6_9rPq9_XVr9WPen1383P1bV3bhulcCwnAXKdQq0YuHdWq485hc28bKYSgTcMazWUrGCIXrhWaMuCaQgdKiCI6q74efbcx_JkxZfNQnvDlpOFCScoUbw8sfmTZGFKK6Mw2jhuIe8OoOcRujrGbErt5id3siqg5ilIh-x7jm_U7qv_Twom6</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Kumar, Rakesh</creator><creator>Kumar, Ravinder</creator><creator>Sharma, Tanya</creator><creator>Sheikholeslami, Mohsen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210201</creationdate><title>Mathematical modeling of stagnation region nanofluid flow through Darcy–Forchheimer space taking into account inconsistent heat source/sink</title><author>Kumar, Rakesh ; Kumar, Ravinder ; Sharma, Tanya ; Sheikholeslami, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-45aa1fd8e98357f098d2ffe3bc3544403313925641ee24f64901a290ada844983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied mathematics</topic><topic>Asymptotic methods</topic><topic>Boundary layer equations</topic><topic>Computational fluid dynamics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Fluid flow</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Matrix methods</topic><topic>Nanofluids</topic><topic>Original Research</topic><topic>Porous media</topic><topic>Stagnation point</topic><topic>Stretching</topic><topic>Theory of Computation</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Rakesh</creatorcontrib><creatorcontrib>Kumar, Ravinder</creatorcontrib><creatorcontrib>Sharma, Tanya</creatorcontrib><creatorcontrib>Sheikholeslami, Mohsen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied mathematics & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Rakesh</au><au>Kumar, Ravinder</au><au>Sharma, Tanya</au><au>Sheikholeslami, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling of stagnation region nanofluid flow through Darcy–Forchheimer space taking into account inconsistent heat source/sink</atitle><jtitle>Journal of applied mathematics & computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>65</volume><issue>1-2</issue><spage>713</spage><epage>734</epage><pages>713-734</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>The primary target of present research is to examine the application of OHAM (optimal homotopy asymptotic method) for a nanofluid transport through Darcy Forchheimer space toward the stagnation region by comparing stretching and straining forces. The porous matrix is suspended with nanofluid, and the flow field is under inconsistent heat source/sink influence. The solutions of guiding boundary layer equations report that pattern of primary velocity profiles are inverted by stagnation region flow strength. Straightforward relation of Forchheimer number with heat transfer has also been observed when stagnation forces dominate stretching forces. The novelty of present article lies in vector form presentation to OHAM and in the comparative analysis of stretching and straining forces.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12190-020-01412-w</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1598-5865 |
ispartof | Journal of applied mathematics & computing, 2021-02, Vol.65 (1-2), p.713-734 |
issn | 1598-5865 1865-2085 |
language | eng |
recordid | cdi_proquest_journals_2485018268 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied mathematics Asymptotic methods Boundary layer equations Computational fluid dynamics Computational Mathematics and Numerical Analysis Fluid flow Mathematical and Computational Engineering Mathematics Mathematics and Statistics Mathematics of Computing Matrix methods Nanofluids Original Research Porous media Stagnation point Stretching Theory of Computation Velocity distribution |
title | Mathematical modeling of stagnation region nanofluid flow through Darcy–Forchheimer space taking into account inconsistent heat source/sink |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20of%20stagnation%20region%20nanofluid%20flow%20through%20Darcy%E2%80%93Forchheimer%20space%20taking%20into%20account%20inconsistent%20heat%20source/sink&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Kumar,%20Rakesh&rft.date=2021-02-01&rft.volume=65&rft.issue=1-2&rft.spage=713&rft.epage=734&rft.pages=713-734&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-020-01412-w&rft_dat=%3Cproquest_cross%3E2485018268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485018268&rft_id=info:pmid/&rfr_iscdi=true |