Using optimized statistical distances to confront distributed denial of service attacks in software defined networks

Software-defined networks (SDN) are an emerging architecture that provides promising amends to put an end to current infrastructure constraints by optimized bandwidth utilization, flexibility in network management and configuration, and pulling down operating costs in traditional network structures....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intelligent data analysis 2021-01, Vol.25 (1), p.155-176
Hauptverfasser: Ghasabi, Mozhgan, Deypir, Mahmood
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176
container_issue 1
container_start_page 155
container_title Intelligent data analysis
container_volume 25
creator Ghasabi, Mozhgan
Deypir, Mahmood
description Software-defined networks (SDN) are an emerging architecture that provides promising amends to put an end to current infrastructure constraints by optimized bandwidth utilization, flexibility in network management and configuration, and pulling down operating costs in traditional network structures. Despite the advantages of this architecture, SDNs may become the victim of a distributed denial of service (DDOS) attacks as the result of potential vulnerabilities in various layers. Therefore, the rapid detection of attack traffic in the early stages is very important. In this paper, we have proposed statistical solution to detect and to mitigate distributed denial of service attack in software-defined networks utilizing the unique capabilities of the SDN architecture. Here, the exponential weighted moving average protection mechanism (EWMA) in statistical distances is exploited. The simulation results of our extensive experiments showed that our mechanism is able to quick detection of attack traffics and take amendatory actions. Moreover, the evaluations show the superiority of the proposed algorithm with respect to other statistical methods.
doi_str_mv 10.3233/IDA-194796
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2485004555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485004555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-f312295ea409dd2da7f6413b95003ff2ceae567cf62f8533e66a82407fc3d5eb3</originalsourceid><addsrcrecordid>eNotkMtKQzEURYMoWKsTvyDgTLia530MS30VCk4sOAtpciLpI6lJqujXG62jszks9oaF0CUlN5xxfju7mzR0EN3QHqERlR1tBGX9cc2k7xvRdq-n6CznFSFEMCJGqCyyD2847orf-m-wOBddfC7e6A22NehgIOMSsYnBpRjK3zf55b5U2kLwFYwOZ0gf3gDWpWizztgHnKMrnzpBpZwPlQ5QPmNa53N04vQmw8X_HaPFw_3L9KmZPz_OppN5Y5gcSuM4ZWyQoAUZrGVWd64VlC8HSQh3jhnQINvOuJa5XnIObat7JkjnDLcSlnyMrg69uxTf95CLWsV9CnVSMdHXFiGlrNT1gTIp5pzAqV3yW52-FCXq16qqVtXBKv8B0A9snA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485004555</pqid></control><display><type>article</type><title>Using optimized statistical distances to confront distributed denial of service attacks in software defined networks</title><source>Business Source Complete</source><creator>Ghasabi, Mozhgan ; Deypir, Mahmood</creator><creatorcontrib>Ghasabi, Mozhgan ; Deypir, Mahmood</creatorcontrib><description>Software-defined networks (SDN) are an emerging architecture that provides promising amends to put an end to current infrastructure constraints by optimized bandwidth utilization, flexibility in network management and configuration, and pulling down operating costs in traditional network structures. Despite the advantages of this architecture, SDNs may become the victim of a distributed denial of service (DDOS) attacks as the result of potential vulnerabilities in various layers. Therefore, the rapid detection of attack traffic in the early stages is very important. In this paper, we have proposed statistical solution to detect and to mitigate distributed denial of service attack in software-defined networks utilizing the unique capabilities of the SDN architecture. Here, the exponential weighted moving average protection mechanism (EWMA) in statistical distances is exploited. The simulation results of our extensive experiments showed that our mechanism is able to quick detection of attack traffics and take amendatory actions. Moreover, the evaluations show the superiority of the proposed algorithm with respect to other statistical methods.</description><identifier>ISSN: 1088-467X</identifier><identifier>EISSN: 1571-4128</identifier><identifier>DOI: 10.3233/IDA-194796</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Computer architecture ; Configuration management ; Cybersecurity ; Denial of service attacks ; Networks ; Security management ; Software-defined networking ; Statistical methods</subject><ispartof>Intelligent data analysis, 2021-01, Vol.25 (1), p.155-176</ispartof><rights>Copyright IOS Press BV 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-f312295ea409dd2da7f6413b95003ff2ceae567cf62f8533e66a82407fc3d5eb3</citedby><cites>FETCH-LOGICAL-c259t-f312295ea409dd2da7f6413b95003ff2ceae567cf62f8533e66a82407fc3d5eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ghasabi, Mozhgan</creatorcontrib><creatorcontrib>Deypir, Mahmood</creatorcontrib><title>Using optimized statistical distances to confront distributed denial of service attacks in software defined networks</title><title>Intelligent data analysis</title><description>Software-defined networks (SDN) are an emerging architecture that provides promising amends to put an end to current infrastructure constraints by optimized bandwidth utilization, flexibility in network management and configuration, and pulling down operating costs in traditional network structures. Despite the advantages of this architecture, SDNs may become the victim of a distributed denial of service (DDOS) attacks as the result of potential vulnerabilities in various layers. Therefore, the rapid detection of attack traffic in the early stages is very important. In this paper, we have proposed statistical solution to detect and to mitigate distributed denial of service attack in software-defined networks utilizing the unique capabilities of the SDN architecture. Here, the exponential weighted moving average protection mechanism (EWMA) in statistical distances is exploited. The simulation results of our extensive experiments showed that our mechanism is able to quick detection of attack traffics and take amendatory actions. Moreover, the evaluations show the superiority of the proposed algorithm with respect to other statistical methods.</description><subject>Algorithms</subject><subject>Computer architecture</subject><subject>Configuration management</subject><subject>Cybersecurity</subject><subject>Denial of service attacks</subject><subject>Networks</subject><subject>Security management</subject><subject>Software-defined networking</subject><subject>Statistical methods</subject><issn>1088-467X</issn><issn>1571-4128</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkMtKQzEURYMoWKsTvyDgTLia530MS30VCk4sOAtpciLpI6lJqujXG62jszks9oaF0CUlN5xxfju7mzR0EN3QHqERlR1tBGX9cc2k7xvRdq-n6CznFSFEMCJGqCyyD2847orf-m-wOBddfC7e6A22NehgIOMSsYnBpRjK3zf55b5U2kLwFYwOZ0gf3gDWpWizztgHnKMrnzpBpZwPlQ5QPmNa53N04vQmw8X_HaPFw_3L9KmZPz_OppN5Y5gcSuM4ZWyQoAUZrGVWd64VlC8HSQh3jhnQINvOuJa5XnIObat7JkjnDLcSlnyMrg69uxTf95CLWsV9CnVSMdHXFiGlrNT1gTIp5pzAqV3yW52-FCXq16qqVtXBKv8B0A9snA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Ghasabi, Mozhgan</creator><creator>Deypir, Mahmood</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210101</creationdate><title>Using optimized statistical distances to confront distributed denial of service attacks in software defined networks</title><author>Ghasabi, Mozhgan ; Deypir, Mahmood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-f312295ea409dd2da7f6413b95003ff2ceae567cf62f8533e66a82407fc3d5eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer architecture</topic><topic>Configuration management</topic><topic>Cybersecurity</topic><topic>Denial of service attacks</topic><topic>Networks</topic><topic>Security management</topic><topic>Software-defined networking</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghasabi, Mozhgan</creatorcontrib><creatorcontrib>Deypir, Mahmood</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Intelligent data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghasabi, Mozhgan</au><au>Deypir, Mahmood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using optimized statistical distances to confront distributed denial of service attacks in software defined networks</atitle><jtitle>Intelligent data analysis</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>25</volume><issue>1</issue><spage>155</spage><epage>176</epage><pages>155-176</pages><issn>1088-467X</issn><eissn>1571-4128</eissn><abstract>Software-defined networks (SDN) are an emerging architecture that provides promising amends to put an end to current infrastructure constraints by optimized bandwidth utilization, flexibility in network management and configuration, and pulling down operating costs in traditional network structures. Despite the advantages of this architecture, SDNs may become the victim of a distributed denial of service (DDOS) attacks as the result of potential vulnerabilities in various layers. Therefore, the rapid detection of attack traffic in the early stages is very important. In this paper, we have proposed statistical solution to detect and to mitigate distributed denial of service attack in software-defined networks utilizing the unique capabilities of the SDN architecture. Here, the exponential weighted moving average protection mechanism (EWMA) in statistical distances is exploited. The simulation results of our extensive experiments showed that our mechanism is able to quick detection of attack traffics and take amendatory actions. Moreover, the evaluations show the superiority of the proposed algorithm with respect to other statistical methods.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/IDA-194796</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1088-467X
ispartof Intelligent data analysis, 2021-01, Vol.25 (1), p.155-176
issn 1088-467X
1571-4128
language eng
recordid cdi_proquest_journals_2485004555
source Business Source Complete
subjects Algorithms
Computer architecture
Configuration management
Cybersecurity
Denial of service attacks
Networks
Security management
Software-defined networking
Statistical methods
title Using optimized statistical distances to confront distributed denial of service attacks in software defined networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A06%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20optimized%20statistical%20distances%20to%20confront%20distributed%20denial%20of%20service%20attacks%20in%20software%20defined%20networks&rft.jtitle=Intelligent%20data%20analysis&rft.au=Ghasabi,%20Mozhgan&rft.date=2021-01-01&rft.volume=25&rft.issue=1&rft.spage=155&rft.epage=176&rft.pages=155-176&rft.issn=1088-467X&rft.eissn=1571-4128&rft_id=info:doi/10.3233/IDA-194796&rft_dat=%3Cproquest_cross%3E2485004555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485004555&rft_id=info:pmid/&rfr_iscdi=true