Three‐dimensional anisotropic plasticity model for sand subjected to principal stress value change and axes rotation
A three‐dimensional (3D) anisotropic plasticity model for sand is formulated in this study to provide a constitutive description for both radial and principal stress axes rotation (PSAR) loading‐induced behavior under various conditions with a single set of model parameters. The model has zero elast...
Gespeichert in:
Veröffentlicht in: | International journal for numerical and analytical methods in geomechanics 2021-02, Vol.45 (3), p.353-381 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 381 |
---|---|
container_issue | 3 |
container_start_page | 353 |
container_title | International journal for numerical and analytical methods in geomechanics |
container_volume | 45 |
creator | Xue, Long Yu, Jia‐Ke Pan, Jin‐Hong Wang, Rui Zhang, Jian‐Min |
description | A three‐dimensional (3D) anisotropic plasticity model for sand is formulated in this study to provide a constitutive description for both radial and principal stress axes rotation (PSAR) loading‐induced behavior under various conditions with a single set of model parameters. The model has zero elastic range, with plastic loading and flow direction dependent on both current stress and stress rate direction. Fabric tensor is introduced along with its evolution to achieve anisotropic plastic modulus, dilatancy, and flow rule formulations. Increase in plastic modulus under continuous PSAR achieves eventual convergence of strain accumulation. A unique decomposition of dilatancy controls the overall contraction and periodic dilatancy oscillation under PSAR. The performance of the model is first thoroughly evaluated based on drained/undrained, monotonic shear/PSAR tests on Toyoura sand, showing its effectiveness in reproducing the behavior of real sand. Discrete element method numerical test results are then adopted for comprehensive calibration of the model parameters, and then for validation of the model under 3D PSAR in any arbitrary direction. These comparisons highlight the model's capability in simulating the behavior of granular soil under 3D stress paths. |
doi_str_mv | 10.1002/nag.3159 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484992350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484992350</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3829-a8adde4f4d2e0765a0dbdecd07ae289942813170b16b309e2338de457f28a0833</originalsourceid><addsrcrecordid>eNp10L1OxDAMB_AIgcTxIfEIkVhYCk7S9pIRIb4kBAvMla9xIadeU5IccBuPwDPyJOQ4ViYP_tmW_4wdCTgVAPJswOdTJSqzxSYCTF0YXaltNgFVq8JALXbZXoxzAKhyd8LeHl8C0ffnl3ULGqLzA_YcBxd9Cn50LR97jMm1Lq34wlvqeecDjzhYHpezObWJLE-ej8ENrRvzcEyBYuRv2C-Jty84PBNfc_ygyINPmPKRA7bTYR_p8K_us6ery8eLm-Lu4fr24vyuQKWlKVCjtVR2pZUE07pCsDNLrYUpktTGlFILJaYwE_VMgSGplM6-mnZSI2il9tnxZu8Y_OuSYmrmfhnyj7GRpS6NkaqCrE42qg0-xkBdk99ZYFg1App1qk1OtVmnmmmxoe-up9W_rrk_v_71P219e5c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484992350</pqid></control><display><type>article</type><title>Three‐dimensional anisotropic plasticity model for sand subjected to principal stress value change and axes rotation</title><source>Wiley Online Library All Journals</source><creator>Xue, Long ; Yu, Jia‐Ke ; Pan, Jin‐Hong ; Wang, Rui ; Zhang, Jian‐Min</creator><creatorcontrib>Xue, Long ; Yu, Jia‐Ke ; Pan, Jin‐Hong ; Wang, Rui ; Zhang, Jian‐Min</creatorcontrib><description>A three‐dimensional (3D) anisotropic plasticity model for sand is formulated in this study to provide a constitutive description for both radial and principal stress axes rotation (PSAR) loading‐induced behavior under various conditions with a single set of model parameters. The model has zero elastic range, with plastic loading and flow direction dependent on both current stress and stress rate direction. Fabric tensor is introduced along with its evolution to achieve anisotropic plastic modulus, dilatancy, and flow rule formulations. Increase in plastic modulus under continuous PSAR achieves eventual convergence of strain accumulation. A unique decomposition of dilatancy controls the overall contraction and periodic dilatancy oscillation under PSAR. The performance of the model is first thoroughly evaluated based on drained/undrained, monotonic shear/PSAR tests on Toyoura sand, showing its effectiveness in reproducing the behavior of real sand. Discrete element method numerical test results are then adopted for comprehensive calibration of the model parameters, and then for validation of the model under 3D PSAR in any arbitrary direction. These comparisons highlight the model's capability in simulating the behavior of granular soil under 3D stress paths.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.3159</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; Axes (reference lines) ; Calibration ; constitutive model ; Contraction ; Dilatancy ; Direction ; Discrete element method ; fabric anisotropy ; Parameters ; Plastic properties ; Plasticity ; Plastics ; principal stress axes rotation ; Rotation ; Sand ; Soil ; Soil stresses ; Stress ; Tensors ; Three dimensional models ; three‐dimensional stress path</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2021-02, Vol.45 (3), p.353-381</ispartof><rights>2020 John Wiley & Sons Ltd.</rights><rights>2021 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3829-a8adde4f4d2e0765a0dbdecd07ae289942813170b16b309e2338de457f28a0833</citedby><cites>FETCH-LOGICAL-a3829-a8adde4f4d2e0765a0dbdecd07ae289942813170b16b309e2338de457f28a0833</cites><orcidid>0000-0002-1607-9783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.3159$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.3159$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Xue, Long</creatorcontrib><creatorcontrib>Yu, Jia‐Ke</creatorcontrib><creatorcontrib>Pan, Jin‐Hong</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Zhang, Jian‐Min</creatorcontrib><title>Three‐dimensional anisotropic plasticity model for sand subjected to principal stress value change and axes rotation</title><title>International journal for numerical and analytical methods in geomechanics</title><description>A three‐dimensional (3D) anisotropic plasticity model for sand is formulated in this study to provide a constitutive description for both radial and principal stress axes rotation (PSAR) loading‐induced behavior under various conditions with a single set of model parameters. The model has zero elastic range, with plastic loading and flow direction dependent on both current stress and stress rate direction. Fabric tensor is introduced along with its evolution to achieve anisotropic plastic modulus, dilatancy, and flow rule formulations. Increase in plastic modulus under continuous PSAR achieves eventual convergence of strain accumulation. A unique decomposition of dilatancy controls the overall contraction and periodic dilatancy oscillation under PSAR. The performance of the model is first thoroughly evaluated based on drained/undrained, monotonic shear/PSAR tests on Toyoura sand, showing its effectiveness in reproducing the behavior of real sand. Discrete element method numerical test results are then adopted for comprehensive calibration of the model parameters, and then for validation of the model under 3D PSAR in any arbitrary direction. These comparisons highlight the model's capability in simulating the behavior of granular soil under 3D stress paths.</description><subject>Anisotropy</subject><subject>Axes (reference lines)</subject><subject>Calibration</subject><subject>constitutive model</subject><subject>Contraction</subject><subject>Dilatancy</subject><subject>Direction</subject><subject>Discrete element method</subject><subject>fabric anisotropy</subject><subject>Parameters</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Plastics</subject><subject>principal stress axes rotation</subject><subject>Rotation</subject><subject>Sand</subject><subject>Soil</subject><subject>Soil stresses</subject><subject>Stress</subject><subject>Tensors</subject><subject>Three dimensional models</subject><subject>three‐dimensional stress path</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10L1OxDAMB_AIgcTxIfEIkVhYCk7S9pIRIb4kBAvMla9xIadeU5IccBuPwDPyJOQ4ViYP_tmW_4wdCTgVAPJswOdTJSqzxSYCTF0YXaltNgFVq8JALXbZXoxzAKhyd8LeHl8C0ffnl3ULGqLzA_YcBxd9Cn50LR97jMm1Lq34wlvqeecDjzhYHpezObWJLE-ej8ENrRvzcEyBYuRv2C-Jty84PBNfc_ygyINPmPKRA7bTYR_p8K_us6ery8eLm-Lu4fr24vyuQKWlKVCjtVR2pZUE07pCsDNLrYUpktTGlFILJaYwE_VMgSGplM6-mnZSI2il9tnxZu8Y_OuSYmrmfhnyj7GRpS6NkaqCrE42qg0-xkBdk99ZYFg1App1qk1OtVmnmmmxoe-up9W_rrk_v_71P219e5c</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Xue, Long</creator><creator>Yu, Jia‐Ke</creator><creator>Pan, Jin‐Hong</creator><creator>Wang, Rui</creator><creator>Zhang, Jian‐Min</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1607-9783</orcidid></search><sort><creationdate>20210201</creationdate><title>Three‐dimensional anisotropic plasticity model for sand subjected to principal stress value change and axes rotation</title><author>Xue, Long ; Yu, Jia‐Ke ; Pan, Jin‐Hong ; Wang, Rui ; Zhang, Jian‐Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3829-a8adde4f4d2e0765a0dbdecd07ae289942813170b16b309e2338de457f28a0833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Axes (reference lines)</topic><topic>Calibration</topic><topic>constitutive model</topic><topic>Contraction</topic><topic>Dilatancy</topic><topic>Direction</topic><topic>Discrete element method</topic><topic>fabric anisotropy</topic><topic>Parameters</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Plastics</topic><topic>principal stress axes rotation</topic><topic>Rotation</topic><topic>Sand</topic><topic>Soil</topic><topic>Soil stresses</topic><topic>Stress</topic><topic>Tensors</topic><topic>Three dimensional models</topic><topic>three‐dimensional stress path</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Long</creatorcontrib><creatorcontrib>Yu, Jia‐Ke</creatorcontrib><creatorcontrib>Pan, Jin‐Hong</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Zhang, Jian‐Min</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Long</au><au>Yu, Jia‐Ke</au><au>Pan, Jin‐Hong</au><au>Wang, Rui</au><au>Zhang, Jian‐Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three‐dimensional anisotropic plasticity model for sand subjected to principal stress value change and axes rotation</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>45</volume><issue>3</issue><spage>353</spage><epage>381</epage><pages>353-381</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><abstract>A three‐dimensional (3D) anisotropic plasticity model for sand is formulated in this study to provide a constitutive description for both radial and principal stress axes rotation (PSAR) loading‐induced behavior under various conditions with a single set of model parameters. The model has zero elastic range, with plastic loading and flow direction dependent on both current stress and stress rate direction. Fabric tensor is introduced along with its evolution to achieve anisotropic plastic modulus, dilatancy, and flow rule formulations. Increase in plastic modulus under continuous PSAR achieves eventual convergence of strain accumulation. A unique decomposition of dilatancy controls the overall contraction and periodic dilatancy oscillation under PSAR. The performance of the model is first thoroughly evaluated based on drained/undrained, monotonic shear/PSAR tests on Toyoura sand, showing its effectiveness in reproducing the behavior of real sand. Discrete element method numerical test results are then adopted for comprehensive calibration of the model parameters, and then for validation of the model under 3D PSAR in any arbitrary direction. These comparisons highlight the model's capability in simulating the behavior of granular soil under 3D stress paths.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nag.3159</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-1607-9783</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-9061 |
ispartof | International journal for numerical and analytical methods in geomechanics, 2021-02, Vol.45 (3), p.353-381 |
issn | 0363-9061 1096-9853 |
language | eng |
recordid | cdi_proquest_journals_2484992350 |
source | Wiley Online Library All Journals |
subjects | Anisotropy Axes (reference lines) Calibration constitutive model Contraction Dilatancy Direction Discrete element method fabric anisotropy Parameters Plastic properties Plasticity Plastics principal stress axes rotation Rotation Sand Soil Soil stresses Stress Tensors Three dimensional models three‐dimensional stress path |
title | Three‐dimensional anisotropic plasticity model for sand subjected to principal stress value change and axes rotation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%E2%80%90dimensional%20anisotropic%20plasticity%20model%20for%20sand%20subjected%20to%20principal%20stress%20value%20change%20and%20axes%20rotation&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Xue,%20Long&rft.date=2021-02-01&rft.volume=45&rft.issue=3&rft.spage=353&rft.epage=381&rft.pages=353-381&rft.issn=0363-9061&rft.eissn=1096-9853&rft_id=info:doi/10.1002/nag.3159&rft_dat=%3Cproquest_cross%3E2484992350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484992350&rft_id=info:pmid/&rfr_iscdi=true |