Multi-input 2-dimensional deep belief network: diabetic retinopathy grading as case study

The most important action in treating diabetic retinopathy is early diagnosis and its progression degree. This paper presents a two-dimensional Deep Belief Network based on Mixed-restricted Boltzmann Machine capable of receiving multiple two-dimensional inputs. Using multiple inputs provides more ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2021-02, Vol.80 (4), p.6171-6186
Hauptverfasser: Tehrani, Amirali Amini, Nickfarjam, Ali Mohammad, Ebrahimpour-komleh, Hossein, Aghadoost, Dawood
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6186
container_issue 4
container_start_page 6171
container_title Multimedia tools and applications
container_volume 80
creator Tehrani, Amirali Amini
Nickfarjam, Ali Mohammad
Ebrahimpour-komleh, Hossein
Aghadoost, Dawood
description The most important action in treating diabetic retinopathy is early diagnosis and its progression degree. This paper presents a two-dimensional Deep Belief Network based on Mixed-restricted Boltzmann Machine capable of receiving multiple two-dimensional inputs. Using multiple inputs provides more appropriate prior information for learning. In this proposed method, the image is transferred to the HSV color space and then the 3D color image is converted to a 2D matrix using a weighted mean. This weighted mean is calculated based on the entropy criterion. The resulting two-dimensional matrix is not in pixel and is merely a raw description of the image. The local, regional and global descriptions are extracted from this matrix and provided for the network. The proposed deep network automatically extracts the appropriate features to determine the progression degree of diabetic retinopathy by the network. Window by window image processing can overcome one of the basic problems of image classification, i.e. the small number of labeled data. Experiments showed that the proposed method is superior when compared to other methods.
doi_str_mv 10.1007/s11042-020-10025-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484419428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484419428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e3e383e2efd68b90c540a7f89e53d539807bc567fe789e4e45c48adc4db76c73</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYsoOI7-AVcB19E8m9adDL5AcTMbVyFNbseMnbYmKTL_3mgFd27ui3MOl68ozim5pISoq0gpEQwTRnDemcT0oFhQqThWitHDPPOKYCUJPS5OYtwSQkvJxKJ4fZ665LHvxykhhp3fQR_90JsOOYARNdB5aFEP6XMI79fIedNA8haFXPthNOltjzbBON9vkInImggopsntT4uj1nQRzn77sljf3a5XD_jp5f5xdfOELad1wsCBVxwYtK6smppYKYhRbVWD5E7yuiKqsbJULah8EyCkFZVxVrhGlVbxZXExx45h-JggJr0dppD_j5qJSghaC1ZlFZtVNgwxBmj1GPzOhL2mRH8T1DNBnQnqH4KaZhOfTTGL-w2Ev-h_XF-EU3Ql</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484419428</pqid></control><display><type>article</type><title>Multi-input 2-dimensional deep belief network: diabetic retinopathy grading as case study</title><source>Springer Nature</source><creator>Tehrani, Amirali Amini ; Nickfarjam, Ali Mohammad ; Ebrahimpour-komleh, Hossein ; Aghadoost, Dawood</creator><creatorcontrib>Tehrani, Amirali Amini ; Nickfarjam, Ali Mohammad ; Ebrahimpour-komleh, Hossein ; Aghadoost, Dawood</creatorcontrib><description>The most important action in treating diabetic retinopathy is early diagnosis and its progression degree. This paper presents a two-dimensional Deep Belief Network based on Mixed-restricted Boltzmann Machine capable of receiving multiple two-dimensional inputs. Using multiple inputs provides more appropriate prior information for learning. In this proposed method, the image is transferred to the HSV color space and then the 3D color image is converted to a 2D matrix using a weighted mean. This weighted mean is calculated based on the entropy criterion. The resulting two-dimensional matrix is not in pixel and is merely a raw description of the image. The local, regional and global descriptions are extracted from this matrix and provided for the network. The proposed deep network automatically extracts the appropriate features to determine the progression degree of diabetic retinopathy by the network. Window by window image processing can overcome one of the basic problems of image classification, i.e. the small number of labeled data. Experiments showed that the proposed method is superior when compared to other methods.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-10025-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Belief networks ; Color imagery ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Diabetes ; Diabetic retinopathy ; Feature extraction ; Image classification ; Image processing ; Multimedia Information Systems ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2021-02, Vol.80 (4), p.6171-6186</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e3e383e2efd68b90c540a7f89e53d539807bc567fe789e4e45c48adc4db76c73</citedby><cites>FETCH-LOGICAL-c319t-e3e383e2efd68b90c540a7f89e53d539807bc567fe789e4e45c48adc4db76c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-10025-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-10025-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tehrani, Amirali Amini</creatorcontrib><creatorcontrib>Nickfarjam, Ali Mohammad</creatorcontrib><creatorcontrib>Ebrahimpour-komleh, Hossein</creatorcontrib><creatorcontrib>Aghadoost, Dawood</creatorcontrib><title>Multi-input 2-dimensional deep belief network: diabetic retinopathy grading as case study</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>The most important action in treating diabetic retinopathy is early diagnosis and its progression degree. This paper presents a two-dimensional Deep Belief Network based on Mixed-restricted Boltzmann Machine capable of receiving multiple two-dimensional inputs. Using multiple inputs provides more appropriate prior information for learning. In this proposed method, the image is transferred to the HSV color space and then the 3D color image is converted to a 2D matrix using a weighted mean. This weighted mean is calculated based on the entropy criterion. The resulting two-dimensional matrix is not in pixel and is merely a raw description of the image. The local, regional and global descriptions are extracted from this matrix and provided for the network. The proposed deep network automatically extracts the appropriate features to determine the progression degree of diabetic retinopathy by the network. Window by window image processing can overcome one of the basic problems of image classification, i.e. the small number of labeled data. Experiments showed that the proposed method is superior when compared to other methods.</description><subject>Belief networks</subject><subject>Color imagery</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Diabetes</subject><subject>Diabetic retinopathy</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLxDAUhYsoOI7-AVcB19E8m9adDL5AcTMbVyFNbseMnbYmKTL_3mgFd27ui3MOl68ozim5pISoq0gpEQwTRnDemcT0oFhQqThWitHDPPOKYCUJPS5OYtwSQkvJxKJ4fZ665LHvxykhhp3fQR_90JsOOYARNdB5aFEP6XMI79fIedNA8haFXPthNOltjzbBON9vkInImggopsntT4uj1nQRzn77sljf3a5XD_jp5f5xdfOELad1wsCBVxwYtK6smppYKYhRbVWD5E7yuiKqsbJULah8EyCkFZVxVrhGlVbxZXExx45h-JggJr0dppD_j5qJSghaC1ZlFZtVNgwxBmj1GPzOhL2mRH8T1DNBnQnqH4KaZhOfTTGL-w2Ev-h_XF-EU3Ql</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Tehrani, Amirali Amini</creator><creator>Nickfarjam, Ali Mohammad</creator><creator>Ebrahimpour-komleh, Hossein</creator><creator>Aghadoost, Dawood</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20210201</creationdate><title>Multi-input 2-dimensional deep belief network: diabetic retinopathy grading as case study</title><author>Tehrani, Amirali Amini ; Nickfarjam, Ali Mohammad ; Ebrahimpour-komleh, Hossein ; Aghadoost, Dawood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e3e383e2efd68b90c540a7f89e53d539807bc567fe789e4e45c48adc4db76c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Belief networks</topic><topic>Color imagery</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Diabetes</topic><topic>Diabetic retinopathy</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tehrani, Amirali Amini</creatorcontrib><creatorcontrib>Nickfarjam, Ali Mohammad</creatorcontrib><creatorcontrib>Ebrahimpour-komleh, Hossein</creatorcontrib><creatorcontrib>Aghadoost, Dawood</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tehrani, Amirali Amini</au><au>Nickfarjam, Ali Mohammad</au><au>Ebrahimpour-komleh, Hossein</au><au>Aghadoost, Dawood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-input 2-dimensional deep belief network: diabetic retinopathy grading as case study</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>80</volume><issue>4</issue><spage>6171</spage><epage>6186</epage><pages>6171-6186</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>The most important action in treating diabetic retinopathy is early diagnosis and its progression degree. This paper presents a two-dimensional Deep Belief Network based on Mixed-restricted Boltzmann Machine capable of receiving multiple two-dimensional inputs. Using multiple inputs provides more appropriate prior information for learning. In this proposed method, the image is transferred to the HSV color space and then the 3D color image is converted to a 2D matrix using a weighted mean. This weighted mean is calculated based on the entropy criterion. The resulting two-dimensional matrix is not in pixel and is merely a raw description of the image. The local, regional and global descriptions are extracted from this matrix and provided for the network. The proposed deep network automatically extracts the appropriate features to determine the progression degree of diabetic retinopathy by the network. Window by window image processing can overcome one of the basic problems of image classification, i.e. the small number of labeled data. Experiments showed that the proposed method is superior when compared to other methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-10025-1</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2021-02, Vol.80 (4), p.6171-6186
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2484419428
source Springer Nature
subjects Belief networks
Color imagery
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Diabetes
Diabetic retinopathy
Feature extraction
Image classification
Image processing
Multimedia Information Systems
Special Purpose and Application-Based Systems
title Multi-input 2-dimensional deep belief network: diabetic retinopathy grading as case study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A57%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-input%202-dimensional%20deep%20belief%20network:%20diabetic%20retinopathy%20grading%20as%20case%20study&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Tehrani,%20Amirali%20Amini&rft.date=2021-02-01&rft.volume=80&rft.issue=4&rft.spage=6171&rft.epage=6186&rft.pages=6171-6186&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-10025-1&rft_dat=%3Cproquest_cross%3E2484419428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484419428&rft_id=info:pmid/&rfr_iscdi=true