GPU-accelerated image segmentation based on level sets and multiple texture features

In this paper, we present a fast multi-stage image segmentation method that incorporates texture analysis into a level set-based active contour framework. This approach allows integrating multiple feature extraction methods and is not tied to any specific texture descriptors. Prior knowledge of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2021-02, Vol.80 (4), p.5087-5109
Hauptverfasser: Reska, Daniel, Kretowski, Marek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5109
container_issue 4
container_start_page 5087
container_title Multimedia tools and applications
container_volume 80
creator Reska, Daniel
Kretowski, Marek
description In this paper, we present a fast multi-stage image segmentation method that incorporates texture analysis into a level set-based active contour framework. This approach allows integrating multiple feature extraction methods and is not tied to any specific texture descriptors. Prior knowledge of the image patterns is also not required. The method starts with an initial feature extraction and selection, then performs a fast level set-based evolution process and ends with a final refinement stage that integrates a region-based model. The presented implementation employs a set of features based on Grey Level Co-occurrence Matrices, Gabor filters and structure tensors. The high performance of feature extraction and contour evolution stages is achieved with GPU acceleration. The method is validated on synthetic and natural images and confronted with results of the most similar among the accessible algorithms.
doi_str_mv 10.1007/s11042-020-09911-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484418898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484418898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a1472b5c45a4db0d07d65bbbbefea8a6284a70a2082fec5f0c0bea4a8b2f43e43</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwueo5NsskmPUrQVCnpoz2F2d7a0bHdrkhX996au4M25vIH3Mcxj7FbAvQAwD0EIUJKDBA6zmRBcn7GJ0CbnxkhxnvbcAjcaxCW7CmEPIAot1YStF28bjlVFLXmMVGe7A24pC7Q9UBcx7vouKzEkIi0tfVCbuBgy7OrsMLRxd2wpi_QZB09ZQ3jCcM0uGmwD3fzilG2en9bzJV-9Ll7mjyte5UUeOQplZKkrpVHVJdRg6kKXaSgFWSykVWgAJVjZUKUbqKAkVGhL2aicVD5ld2Pu0ffvA4Xo9v3gu3TSSWWVEtbObFLJUVX5PgRPjTv69KX_cgLcqT03tudSe-6nPaeTKR9NIYm7Lfm_6H9c3_Tvc50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484418898</pqid></control><display><type>article</type><title>GPU-accelerated image segmentation based on level sets and multiple texture features</title><source>SpringerNature Journals</source><creator>Reska, Daniel ; Kretowski, Marek</creator><creatorcontrib>Reska, Daniel ; Kretowski, Marek</creatorcontrib><description>In this paper, we present a fast multi-stage image segmentation method that incorporates texture analysis into a level set-based active contour framework. This approach allows integrating multiple feature extraction methods and is not tied to any specific texture descriptors. Prior knowledge of the image patterns is also not required. The method starts with an initial feature extraction and selection, then performs a fast level set-based evolution process and ends with a final refinement stage that integrates a region-based model. The presented implementation employs a set of features based on Grey Level Co-occurrence Matrices, Gabor filters and structure tensors. The high performance of feature extraction and contour evolution stages is achieved with GPU acceleration. The method is validated on synthetic and natural images and confronted with results of the most similar among the accessible algorithms.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-09911-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Communication Networks ; Computer Science ; Contours ; Data Structures and Information Theory ; Discriminant analysis ; Evolution ; Feature extraction ; Gabor filters ; Image segmentation ; Methods ; Multimedia ; Multimedia Information Systems ; Special Purpose and Application-Based Systems ; Tensors ; Texture</subject><ispartof>Multimedia tools and applications, 2021-02, Vol.80 (4), p.5087-5109</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a1472b5c45a4db0d07d65bbbbefea8a6284a70a2082fec5f0c0bea4a8b2f43e43</citedby><cites>FETCH-LOGICAL-c363t-a1472b5c45a4db0d07d65bbbbefea8a6284a70a2082fec5f0c0bea4a8b2f43e43</cites><orcidid>0000-0001-9175-2678 ; 0000-0002-2367-7546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-09911-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-09911-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Reska, Daniel</creatorcontrib><creatorcontrib>Kretowski, Marek</creatorcontrib><title>GPU-accelerated image segmentation based on level sets and multiple texture features</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In this paper, we present a fast multi-stage image segmentation method that incorporates texture analysis into a level set-based active contour framework. This approach allows integrating multiple feature extraction methods and is not tied to any specific texture descriptors. Prior knowledge of the image patterns is also not required. The method starts with an initial feature extraction and selection, then performs a fast level set-based evolution process and ends with a final refinement stage that integrates a region-based model. The presented implementation employs a set of features based on Grey Level Co-occurrence Matrices, Gabor filters and structure tensors. The high performance of feature extraction and contour evolution stages is achieved with GPU acceleration. The method is validated on synthetic and natural images and confronted with results of the most similar among the accessible algorithms.</description><subject>Algorithms</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Contours</subject><subject>Data Structures and Information Theory</subject><subject>Discriminant analysis</subject><subject>Evolution</subject><subject>Feature extraction</subject><subject>Gabor filters</subject><subject>Image segmentation</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Tensors</subject><subject>Texture</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BTwueo5NsskmPUrQVCnpoz2F2d7a0bHdrkhX996au4M25vIH3Mcxj7FbAvQAwD0EIUJKDBA6zmRBcn7GJ0CbnxkhxnvbcAjcaxCW7CmEPIAot1YStF28bjlVFLXmMVGe7A24pC7Q9UBcx7vouKzEkIi0tfVCbuBgy7OrsMLRxd2wpi_QZB09ZQ3jCcM0uGmwD3fzilG2en9bzJV-9Ll7mjyte5UUeOQplZKkrpVHVJdRg6kKXaSgFWSykVWgAJVjZUKUbqKAkVGhL2aicVD5ld2Pu0ffvA4Xo9v3gu3TSSWWVEtbObFLJUVX5PgRPjTv69KX_cgLcqT03tudSe-6nPaeTKR9NIYm7Lfm_6H9c3_Tvc50</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Reska, Daniel</creator><creator>Kretowski, Marek</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9175-2678</orcidid><orcidid>https://orcid.org/0000-0002-2367-7546</orcidid></search><sort><creationdate>20210201</creationdate><title>GPU-accelerated image segmentation based on level sets and multiple texture features</title><author>Reska, Daniel ; Kretowski, Marek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a1472b5c45a4db0d07d65bbbbefea8a6284a70a2082fec5f0c0bea4a8b2f43e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Contours</topic><topic>Data Structures and Information Theory</topic><topic>Discriminant analysis</topic><topic>Evolution</topic><topic>Feature extraction</topic><topic>Gabor filters</topic><topic>Image segmentation</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Tensors</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reska, Daniel</creatorcontrib><creatorcontrib>Kretowski, Marek</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reska, Daniel</au><au>Kretowski, Marek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPU-accelerated image segmentation based on level sets and multiple texture features</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>80</volume><issue>4</issue><spage>5087</spage><epage>5109</epage><pages>5087-5109</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In this paper, we present a fast multi-stage image segmentation method that incorporates texture analysis into a level set-based active contour framework. This approach allows integrating multiple feature extraction methods and is not tied to any specific texture descriptors. Prior knowledge of the image patterns is also not required. The method starts with an initial feature extraction and selection, then performs a fast level set-based evolution process and ends with a final refinement stage that integrates a region-based model. The presented implementation employs a set of features based on Grey Level Co-occurrence Matrices, Gabor filters and structure tensors. The high performance of feature extraction and contour evolution stages is achieved with GPU acceleration. The method is validated on synthetic and natural images and confronted with results of the most similar among the accessible algorithms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-09911-5</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-9175-2678</orcidid><orcidid>https://orcid.org/0000-0002-2367-7546</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2021-02, Vol.80 (4), p.5087-5109
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2484418898
source SpringerNature Journals
subjects Algorithms
Computer Communication Networks
Computer Science
Contours
Data Structures and Information Theory
Discriminant analysis
Evolution
Feature extraction
Gabor filters
Image segmentation
Methods
Multimedia
Multimedia Information Systems
Special Purpose and Application-Based Systems
Tensors
Texture
title GPU-accelerated image segmentation based on level sets and multiple texture features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPU-accelerated%20image%20segmentation%20based%20on%20level%20sets%20and%20multiple%20texture%20features&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Reska,%20Daniel&rft.date=2021-02-01&rft.volume=80&rft.issue=4&rft.spage=5087&rft.epage=5109&rft.pages=5087-5109&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-09911-5&rft_dat=%3Cproquest_cross%3E2484418898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484418898&rft_id=info:pmid/&rfr_iscdi=true