Gaining Scale Invariance in UAV Bird's Eye View Object Detection by Adaptive Resizing
This work introduces a new preprocessing step for object detection applicable to UAV bird's eye view imagery, which we call Adaptive Resizing. By design, it helps alleviate the challenges coming with the vast variances in objects' scales, naturally inherent to UAV data sets. Furthermore, i...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Messmer, Martin Kiefer, Benjamin Zell, Andreas |
description | This work introduces a new preprocessing step for object detection applicable to UAV bird's eye view imagery, which we call Adaptive Resizing. By design, it helps alleviate the challenges coming with the vast variances in objects' scales, naturally inherent to UAV data sets. Furthermore, it improves inference speed by two to three times on average. We test this extensively on UAVDT, VisDrone, and on a new data set we captured ourselves and achieve consistent improvements while being considerably faster. Moreover, we show how to apply this method to generic UAV object detection tasks. Additionally, we successfully test our approach on a height transfer task where we train on some interval of altitudes and test on a different one. Furthermore, we introduce a small, fast detector meant for deployment to an embedded GPU. Code will be made publicly available on our website. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2484418231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484418231</sourcerecordid><originalsourceid>FETCH-proquest_journals_24844182313</originalsourceid><addsrcrecordid>eNqNjMsKgkAUQIcgSMp_uNCilaAzWm6t7LEKKt3KqLe4IqM5atjX56IPaHUW53AmzOBCOJbvcj5jptaFbdt8veGeJwwWHSUpUk-4ZbJEOKteNiRVhkAKoiCGLTX5SkM4IMSEb7ikBWYt7LEdQZWCdIAgl3VLPcIVNX3G24JNH7LUaP44Z8tDeN-drLqpXh3qNimqrlGjSrjru67jc-GI_6ov1v0_Lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484418231</pqid></control><display><type>article</type><title>Gaining Scale Invariance in UAV Bird's Eye View Object Detection by Adaptive Resizing</title><source>Free E- Journals</source><creator>Messmer, Martin ; Kiefer, Benjamin ; Zell, Andreas</creator><creatorcontrib>Messmer, Martin ; Kiefer, Benjamin ; Zell, Andreas</creatorcontrib><description>This work introduces a new preprocessing step for object detection applicable to UAV bird's eye view imagery, which we call Adaptive Resizing. By design, it helps alleviate the challenges coming with the vast variances in objects' scales, naturally inherent to UAV data sets. Furthermore, it improves inference speed by two to three times on average. We test this extensively on UAVDT, VisDrone, and on a new data set we captured ourselves and achieve consistent improvements while being considerably faster. Moreover, we show how to apply this method to generic UAV object detection tasks. Additionally, we successfully test our approach on a height transfer task where we train on some interval of altitudes and test on a different one. Furthermore, we introduce a small, fast detector meant for deployment to an embedded GPU. Code will be made publicly available on our website.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Imagery ; Object recognition ; Scale invariance ; Websites</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Messmer, Martin</creatorcontrib><creatorcontrib>Kiefer, Benjamin</creatorcontrib><creatorcontrib>Zell, Andreas</creatorcontrib><title>Gaining Scale Invariance in UAV Bird's Eye View Object Detection by Adaptive Resizing</title><title>arXiv.org</title><description>This work introduces a new preprocessing step for object detection applicable to UAV bird's eye view imagery, which we call Adaptive Resizing. By design, it helps alleviate the challenges coming with the vast variances in objects' scales, naturally inherent to UAV data sets. Furthermore, it improves inference speed by two to three times on average. We test this extensively on UAVDT, VisDrone, and on a new data set we captured ourselves and achieve consistent improvements while being considerably faster. Moreover, we show how to apply this method to generic UAV object detection tasks. Additionally, we successfully test our approach on a height transfer task where we train on some interval of altitudes and test on a different one. Furthermore, we introduce a small, fast detector meant for deployment to an embedded GPU. Code will be made publicly available on our website.</description><subject>Datasets</subject><subject>Imagery</subject><subject>Object recognition</subject><subject>Scale invariance</subject><subject>Websites</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKgkAUQIcgSMp_uNCilaAzWm6t7LEKKt3KqLe4IqM5atjX56IPaHUW53AmzOBCOJbvcj5jptaFbdt8veGeJwwWHSUpUk-4ZbJEOKteNiRVhkAKoiCGLTX5SkM4IMSEb7ikBWYt7LEdQZWCdIAgl3VLPcIVNX3G24JNH7LUaP44Z8tDeN-drLqpXh3qNimqrlGjSrjru67jc-GI_6ov1v0_Lw</recordid><startdate>20220408</startdate><enddate>20220408</enddate><creator>Messmer, Martin</creator><creator>Kiefer, Benjamin</creator><creator>Zell, Andreas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220408</creationdate><title>Gaining Scale Invariance in UAV Bird's Eye View Object Detection by Adaptive Resizing</title><author>Messmer, Martin ; Kiefer, Benjamin ; Zell, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24844182313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Datasets</topic><topic>Imagery</topic><topic>Object recognition</topic><topic>Scale invariance</topic><topic>Websites</topic><toplevel>online_resources</toplevel><creatorcontrib>Messmer, Martin</creatorcontrib><creatorcontrib>Kiefer, Benjamin</creatorcontrib><creatorcontrib>Zell, Andreas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Messmer, Martin</au><au>Kiefer, Benjamin</au><au>Zell, Andreas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Gaining Scale Invariance in UAV Bird's Eye View Object Detection by Adaptive Resizing</atitle><jtitle>arXiv.org</jtitle><date>2022-04-08</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>This work introduces a new preprocessing step for object detection applicable to UAV bird's eye view imagery, which we call Adaptive Resizing. By design, it helps alleviate the challenges coming with the vast variances in objects' scales, naturally inherent to UAV data sets. Furthermore, it improves inference speed by two to three times on average. We test this extensively on UAVDT, VisDrone, and on a new data set we captured ourselves and achieve consistent improvements while being considerably faster. Moreover, we show how to apply this method to generic UAV object detection tasks. Additionally, we successfully test our approach on a height transfer task where we train on some interval of altitudes and test on a different one. Furthermore, we introduce a small, fast detector meant for deployment to an embedded GPU. Code will be made publicly available on our website.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2484418231 |
source | Free E- Journals |
subjects | Datasets Imagery Object recognition Scale invariance Websites |
title | Gaining Scale Invariance in UAV Bird's Eye View Object Detection by Adaptive Resizing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Gaining%20Scale%20Invariance%20in%20UAV%20Bird's%20Eye%20View%20Object%20Detection%20by%20Adaptive%20Resizing&rft.jtitle=arXiv.org&rft.au=Messmer,%20Martin&rft.date=2022-04-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2484418231%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484418231&rft_id=info:pmid/&rfr_iscdi=true |