Biogenic hydroxyapatite as novel catalytic support for Ni and Cu for the water–gas shift reaction
Biogenic hydroxyapatite (NHAp) was prepared by calcination of waste pork bones and investigated as catalytic support for Ni and Cu metals in the water–gas shift (WGS) reaction. Part of the doped Cu was ion exchanged with Ca ions in the NHAp structure. Also, XPS data showed that after Cu doping, nick...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2021-04, Vol.56 (11), p.6745-6763 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6763 |
---|---|
container_issue | 11 |
container_start_page | 6745 |
container_title | Journal of materials science |
container_volume | 56 |
creator | Iriarte-Velasco, U. Ayastuy, J. L. Bravo, R. Boukha, Z. Gutiérrez-Ortiz, M. A. |
description | Biogenic hydroxyapatite (NHAp) was prepared by calcination of waste pork bones and investigated as catalytic support for Ni and Cu metals in the water–gas shift (WGS) reaction. Part of the doped Cu was ion exchanged with Ca ions in the NHAp structure. Also, XPS data showed that after Cu doping, nickel d-hole density increased due to adjacent Cu atoms. Upon reduction, Ni–Cu alloying was detected. For an ideal mixture (CO/H
2
O: 1/2 in vol%), the monometallic Cu assay was WGS inactive, whereas 10Ni/NHAp was the most active. However, under reformer outlet stream conditions (CO/H
2
O/CO
2
/H
2
/He = 5/46/4/31/14, in vol%), the catalyst 10Ni/NHAp showed negative H
2
yield (net hydrogen consumption), whereas selectivity and yield to H
2
by Cu-doped bimetallic catalysts reached up to 93% and 26%, respectively. Interestingly, the band-gap energy of these catalysts decreased in line with methane suppression capability (10Ni/NHAp ≫ 7.5Ni2.5Cu/NHAp > 2.5Ni2.5Cu/NHAp > 10Cu/NHAp). Long duration catalytic tests revealed that NHAp derived from pork bone can provide good stability for the WGS reaction, with negligible carbon deposition.
Graphical abstract |
doi_str_mv | 10.1007/s10853-020-05724-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2484413600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650457893</galeid><sourcerecordid>A650457893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-93a0b23647b2aca24a1dcbd5c817b767065abc3d82769156203ff03d2f6e124a3</originalsourceid><addsrcrecordid>eNp9kc2KFDEQx4MoOK6-gKeAJw-9Vj466Tmugx8Li4If51CdTnqyzHbaJK0zN9_BN_RJzG4LshdPRRW_X1XBn5DnDM4ZgH6VGXStaIBDA63msjk-IBvWatHIDsRDsgHgvOFSscfkSc7XALcY2xD7OsTRTcHS_WlI8XjCGUsojmKmU_zuDtRiwcOpVCIv8xxToT4m-iFQnAa6W-66snf0BxaXfv_8NVYz74MvNDm0JcTpKXnk8ZDds7_1jHx9--bL7n1z9fHd5e7iqrGSb0uzFQg9F0rqnqNFLpENth9a2zHda6VBtdhbMXRcqy1rFQfhPYiBe-VYpcUZebHunVP8trhczHVc0lRPGi47KZlQAJU6X6kRD86EyceS6jmLg7sJNk7Ohzq_UC3IVndbUYWX94TKFHcsIy45m8vPn-6zfGVtijkn582cwg2mk2FgbpMya1KmJmXukjLHKolVyhWeRpf-_f0f6w_pCJbd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484413600</pqid></control><display><type>article</type><title>Biogenic hydroxyapatite as novel catalytic support for Ni and Cu for the water–gas shift reaction</title><source>Springer Nature - Complete Springer Journals</source><creator>Iriarte-Velasco, U. ; Ayastuy, J. L. ; Bravo, R. ; Boukha, Z. ; Gutiérrez-Ortiz, M. A.</creator><creatorcontrib>Iriarte-Velasco, U. ; Ayastuy, J. L. ; Bravo, R. ; Boukha, Z. ; Gutiérrez-Ortiz, M. A.</creatorcontrib><description>Biogenic hydroxyapatite (NHAp) was prepared by calcination of waste pork bones and investigated as catalytic support for Ni and Cu metals in the water–gas shift (WGS) reaction. Part of the doped Cu was ion exchanged with Ca ions in the NHAp structure. Also, XPS data showed that after Cu doping, nickel d-hole density increased due to adjacent Cu atoms. Upon reduction, Ni–Cu alloying was detected. For an ideal mixture (CO/H
2
O: 1/2 in vol%), the monometallic Cu assay was WGS inactive, whereas 10Ni/NHAp was the most active. However, under reformer outlet stream conditions (CO/H
2
O/CO
2
/H
2
/He = 5/46/4/31/14, in vol%), the catalyst 10Ni/NHAp showed negative H
2
yield (net hydrogen consumption), whereas selectivity and yield to H
2
by Cu-doped bimetallic catalysts reached up to 93% and 26%, respectively. Interestingly, the band-gap energy of these catalysts decreased in line with methane suppression capability (10Ni/NHAp ≫ 7.5Ni2.5Cu/NHAp > 2.5Ni2.5Cu/NHAp > 10Cu/NHAp). Long duration catalytic tests revealed that NHAp derived from pork bone can provide good stability for the WGS reaction, with negligible carbon deposition.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-05724-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bimetals ; Bones ; Calcium ions ; Catalysts ; Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Copper ; Crystallography and Scattering Methods ; Energy gap ; Hole density ; Hydroxyapatite ; Ion exchange ; Materials Science ; Nickel ; Polymer Sciences ; Pork ; Selectivity ; Shift reaction ; Solid Mechanics</subject><ispartof>Journal of materials science, 2021-04, Vol.56 (11), p.6745-6763</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-93a0b23647b2aca24a1dcbd5c817b767065abc3d82769156203ff03d2f6e124a3</citedby><cites>FETCH-LOGICAL-c429t-93a0b23647b2aca24a1dcbd5c817b767065abc3d82769156203ff03d2f6e124a3</cites><orcidid>0000-0001-6269-6427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-05724-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-05724-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Iriarte-Velasco, U.</creatorcontrib><creatorcontrib>Ayastuy, J. L.</creatorcontrib><creatorcontrib>Bravo, R.</creatorcontrib><creatorcontrib>Boukha, Z.</creatorcontrib><creatorcontrib>Gutiérrez-Ortiz, M. A.</creatorcontrib><title>Biogenic hydroxyapatite as novel catalytic support for Ni and Cu for the water–gas shift reaction</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Biogenic hydroxyapatite (NHAp) was prepared by calcination of waste pork bones and investigated as catalytic support for Ni and Cu metals in the water–gas shift (WGS) reaction. Part of the doped Cu was ion exchanged with Ca ions in the NHAp structure. Also, XPS data showed that after Cu doping, nickel d-hole density increased due to adjacent Cu atoms. Upon reduction, Ni–Cu alloying was detected. For an ideal mixture (CO/H
2
O: 1/2 in vol%), the monometallic Cu assay was WGS inactive, whereas 10Ni/NHAp was the most active. However, under reformer outlet stream conditions (CO/H
2
O/CO
2
/H
2
/He = 5/46/4/31/14, in vol%), the catalyst 10Ni/NHAp showed negative H
2
yield (net hydrogen consumption), whereas selectivity and yield to H
2
by Cu-doped bimetallic catalysts reached up to 93% and 26%, respectively. Interestingly, the band-gap energy of these catalysts decreased in line with methane suppression capability (10Ni/NHAp ≫ 7.5Ni2.5Cu/NHAp > 2.5Ni2.5Cu/NHAp > 10Cu/NHAp). Long duration catalytic tests revealed that NHAp derived from pork bone can provide good stability for the WGS reaction, with negligible carbon deposition.
Graphical abstract</description><subject>Bimetals</subject><subject>Bones</subject><subject>Calcium ions</subject><subject>Catalysts</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Copper</subject><subject>Crystallography and Scattering Methods</subject><subject>Energy gap</subject><subject>Hole density</subject><subject>Hydroxyapatite</subject><subject>Ion exchange</subject><subject>Materials Science</subject><subject>Nickel</subject><subject>Polymer Sciences</subject><subject>Pork</subject><subject>Selectivity</subject><subject>Shift reaction</subject><subject>Solid Mechanics</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc2KFDEQx4MoOK6-gKeAJw-9Vj466Tmugx8Li4If51CdTnqyzHbaJK0zN9_BN_RJzG4LshdPRRW_X1XBn5DnDM4ZgH6VGXStaIBDA63msjk-IBvWatHIDsRDsgHgvOFSscfkSc7XALcY2xD7OsTRTcHS_WlI8XjCGUsojmKmU_zuDtRiwcOpVCIv8xxToT4m-iFQnAa6W-66snf0BxaXfv_8NVYz74MvNDm0JcTpKXnk8ZDds7_1jHx9--bL7n1z9fHd5e7iqrGSb0uzFQg9F0rqnqNFLpENth9a2zHda6VBtdhbMXRcqy1rFQfhPYiBe-VYpcUZebHunVP8trhczHVc0lRPGi47KZlQAJU6X6kRD86EyceS6jmLg7sJNk7Ohzq_UC3IVndbUYWX94TKFHcsIy45m8vPn-6zfGVtijkn582cwg2mk2FgbpMya1KmJmXukjLHKolVyhWeRpf-_f0f6w_pCJbd</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Iriarte-Velasco, U.</creator><creator>Ayastuy, J. L.</creator><creator>Bravo, R.</creator><creator>Boukha, Z.</creator><creator>Gutiérrez-Ortiz, M. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6269-6427</orcidid></search><sort><creationdate>20210401</creationdate><title>Biogenic hydroxyapatite as novel catalytic support for Ni and Cu for the water–gas shift reaction</title><author>Iriarte-Velasco, U. ; Ayastuy, J. L. ; Bravo, R. ; Boukha, Z. ; Gutiérrez-Ortiz, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-93a0b23647b2aca24a1dcbd5c817b767065abc3d82769156203ff03d2f6e124a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bimetals</topic><topic>Bones</topic><topic>Calcium ions</topic><topic>Catalysts</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Copper</topic><topic>Crystallography and Scattering Methods</topic><topic>Energy gap</topic><topic>Hole density</topic><topic>Hydroxyapatite</topic><topic>Ion exchange</topic><topic>Materials Science</topic><topic>Nickel</topic><topic>Polymer Sciences</topic><topic>Pork</topic><topic>Selectivity</topic><topic>Shift reaction</topic><topic>Solid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iriarte-Velasco, U.</creatorcontrib><creatorcontrib>Ayastuy, J. L.</creatorcontrib><creatorcontrib>Bravo, R.</creatorcontrib><creatorcontrib>Boukha, Z.</creatorcontrib><creatorcontrib>Gutiérrez-Ortiz, M. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iriarte-Velasco, U.</au><au>Ayastuy, J. L.</au><au>Bravo, R.</au><au>Boukha, Z.</au><au>Gutiérrez-Ortiz, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biogenic hydroxyapatite as novel catalytic support for Ni and Cu for the water–gas shift reaction</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>56</volume><issue>11</issue><spage>6745</spage><epage>6763</epage><pages>6745-6763</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Biogenic hydroxyapatite (NHAp) was prepared by calcination of waste pork bones and investigated as catalytic support for Ni and Cu metals in the water–gas shift (WGS) reaction. Part of the doped Cu was ion exchanged with Ca ions in the NHAp structure. Also, XPS data showed that after Cu doping, nickel d-hole density increased due to adjacent Cu atoms. Upon reduction, Ni–Cu alloying was detected. For an ideal mixture (CO/H
2
O: 1/2 in vol%), the monometallic Cu assay was WGS inactive, whereas 10Ni/NHAp was the most active. However, under reformer outlet stream conditions (CO/H
2
O/CO
2
/H
2
/He = 5/46/4/31/14, in vol%), the catalyst 10Ni/NHAp showed negative H
2
yield (net hydrogen consumption), whereas selectivity and yield to H
2
by Cu-doped bimetallic catalysts reached up to 93% and 26%, respectively. Interestingly, the band-gap energy of these catalysts decreased in line with methane suppression capability (10Ni/NHAp ≫ 7.5Ni2.5Cu/NHAp > 2.5Ni2.5Cu/NHAp > 10Cu/NHAp). Long duration catalytic tests revealed that NHAp derived from pork bone can provide good stability for the WGS reaction, with negligible carbon deposition.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-05724-x</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6269-6427</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2021-04, Vol.56 (11), p.6745-6763 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2484413600 |
source | Springer Nature - Complete Springer Journals |
subjects | Bimetals Bones Calcium ions Catalysts Characterization and Evaluation of Materials Chemical Routes to Materials Chemistry and Materials Science Classical Mechanics Copper Crystallography and Scattering Methods Energy gap Hole density Hydroxyapatite Ion exchange Materials Science Nickel Polymer Sciences Pork Selectivity Shift reaction Solid Mechanics |
title | Biogenic hydroxyapatite as novel catalytic support for Ni and Cu for the water–gas shift reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biogenic%20hydroxyapatite%20as%20novel%20catalytic%20support%20for%20Ni%20and%20Cu%20for%20the%20water%E2%80%93gas%20shift%20reaction&rft.jtitle=Journal%20of%20materials%20science&rft.au=Iriarte-Velasco,%20U.&rft.date=2021-04-01&rft.volume=56&rft.issue=11&rft.spage=6745&rft.epage=6763&rft.pages=6745-6763&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-05724-x&rft_dat=%3Cgale_proqu%3EA650457893%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484413600&rft_id=info:pmid/&rft_galeid=A650457893&rfr_iscdi=true |