A generalized Schmidt subspace theorem for closed subschemes

We prove a generalized version of Schmidt's subspace theorem for closed subschemes in general position in terms of suitably defined Seshadri constants with respect to a fixed ample divisor. Our proof builds on previous work of Evertse and Ferretti, Corvaja and Zannier, and others, and uses stan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2021-02, Vol.143 (1), p.213-226
Hauptverfasser: Heier, Gordon, Levin, Aaron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue 1
container_start_page 213
container_title American journal of mathematics
container_volume 143
creator Heier, Gordon
Levin, Aaron
description We prove a generalized version of Schmidt's subspace theorem for closed subschemes in general position in terms of suitably defined Seshadri constants with respect to a fixed ample divisor. Our proof builds on previous work of Evertse and Ferretti, Corvaja and Zannier, and others, and uses standard techniques from algebraic geometry such as notions of positivity, blowing-ups and direct image sheaves. As an application, we recover a higher-dimensional Diophantine approximation theorem of K.~F.~Roth-type due to D.~McKinnon and M.~Roth with a significantly shortened proof, while simultaneously extending the scope of the use of Seshadri constants in this context in a natural way.
doi_str_mv 10.1353/ajm.2021.0008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484287937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484287937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-fc1eab0ca07cb5e917a990725c0236293ab4d31df025b6ec7205aed00c2c9d303</originalsourceid><addsrcrecordid>eNpFkEFLw0AQRhdRsFaP3gOeU2dnk24WvJSiVSh4qJ6XzWRiG5qm7iYH_fVuqOhpmJk338AT4lbCTKpc3bumnSGgnAFAcSYmEgpI50rrczGJI0yNQn0prkJoYgsacCIeFskHH9i7_e6bq2RD23ZX9UkYynB0xEm_5c5zm9SdT2jfhciMO9pyy-FaXNRuH_jmt07F-9Pj2_I5Xb-uXpaLdUoqM31ak2RXAjnQVOZspHbGgMacANUcjXJlVilZ1YB5OWfSCLnjCoCQTKVATcXdKffou8-BQ2-bbvCH-NJiVmRYaKN0pNITRb4LwXNtj37XOv9lJdhRkI2C7CjIjoIin_2lNkx9OwT-D9Zam8zYzShxdIhSjle5-gGNWmhx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484287937</pqid></control><display><type>article</type><title>A generalized Schmidt subspace theorem for closed subschemes</title><source>Project MUSE - Premium Collection</source><creator>Heier, Gordon ; Levin, Aaron</creator><creatorcontrib>Heier, Gordon ; Levin, Aaron</creatorcontrib><description>We prove a generalized version of Schmidt's subspace theorem for closed subschemes in general position in terms of suitably defined Seshadri constants with respect to a fixed ample divisor. Our proof builds on previous work of Evertse and Ferretti, Corvaja and Zannier, and others, and uses standard techniques from algebraic geometry such as notions of positivity, blowing-ups and direct image sheaves. As an application, we recover a higher-dimensional Diophantine approximation theorem of K.~F.~Roth-type due to D.~McKinnon and M.~Roth with a significantly shortened proof, while simultaneously extending the scope of the use of Seshadri constants in this context in a natural way.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2021.0008</identifier><language>eng</language><publisher>Baltimore: Johns Hopkins University Press</publisher><subject>Sheaves ; Theorems</subject><ispartof>American journal of mathematics, 2021-02, Vol.143 (1), p.213-226</ispartof><rights>Copyright © The Johns Hopkins University Press.</rights><rights>Copyright Johns Hopkins University Press Feb 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-fc1eab0ca07cb5e917a990725c0236293ab4d31df025b6ec7205aed00c2c9d303</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://muse.jhu.edu/article/777949/pdf$$EPDF$$P50$$Gprojectmuse$$H</linktopdf><linktohtml>$$Uhttps://muse.jhu.edu/article/777949$$EHTML$$P50$$Gprojectmuse$$H</linktohtml><link.rule.ids>314,778,782,21110,27907,27908,56825,57385</link.rule.ids></links><search><creatorcontrib>Heier, Gordon</creatorcontrib><creatorcontrib>Levin, Aaron</creatorcontrib><title>A generalized Schmidt subspace theorem for closed subschemes</title><title>American journal of mathematics</title><description>We prove a generalized version of Schmidt's subspace theorem for closed subschemes in general position in terms of suitably defined Seshadri constants with respect to a fixed ample divisor. Our proof builds on previous work of Evertse and Ferretti, Corvaja and Zannier, and others, and uses standard techniques from algebraic geometry such as notions of positivity, blowing-ups and direct image sheaves. As an application, we recover a higher-dimensional Diophantine approximation theorem of K.~F.~Roth-type due to D.~McKinnon and M.~Roth with a significantly shortened proof, while simultaneously extending the scope of the use of Seshadri constants in this context in a natural way.</description><subject>Sheaves</subject><subject>Theorems</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLw0AQRhdRsFaP3gOeU2dnk24WvJSiVSh4qJ6XzWRiG5qm7iYH_fVuqOhpmJk338AT4lbCTKpc3bumnSGgnAFAcSYmEgpI50rrczGJI0yNQn0prkJoYgsacCIeFskHH9i7_e6bq2RD23ZX9UkYynB0xEm_5c5zm9SdT2jfhciMO9pyy-FaXNRuH_jmt07F-9Pj2_I5Xb-uXpaLdUoqM31ak2RXAjnQVOZspHbGgMacANUcjXJlVilZ1YB5OWfSCLnjCoCQTKVATcXdKffou8-BQ2-bbvCH-NJiVmRYaKN0pNITRb4LwXNtj37XOv9lJdhRkI2C7CjIjoIin_2lNkx9OwT-D9Zam8zYzShxdIhSjle5-gGNWmhx</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Heier, Gordon</creator><creator>Levin, Aaron</creator><general>Johns Hopkins University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20210201</creationdate><title>A generalized Schmidt subspace theorem for closed subschemes</title><author>Heier, Gordon ; Levin, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-fc1eab0ca07cb5e917a990725c0236293ab4d31df025b6ec7205aed00c2c9d303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Sheaves</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heier, Gordon</creatorcontrib><creatorcontrib>Levin, Aaron</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heier, Gordon</au><au>Levin, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized Schmidt subspace theorem for closed subschemes</atitle><jtitle>American journal of mathematics</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>143</volume><issue>1</issue><spage>213</spage><epage>226</epage><pages>213-226</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><abstract>We prove a generalized version of Schmidt's subspace theorem for closed subschemes in general position in terms of suitably defined Seshadri constants with respect to a fixed ample divisor. Our proof builds on previous work of Evertse and Ferretti, Corvaja and Zannier, and others, and uses standard techniques from algebraic geometry such as notions of positivity, blowing-ups and direct image sheaves. As an application, we recover a higher-dimensional Diophantine approximation theorem of K.~F.~Roth-type due to D.~McKinnon and M.~Roth with a significantly shortened proof, while simultaneously extending the scope of the use of Seshadri constants in this context in a natural way.</abstract><cop>Baltimore</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2021.0008</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9327
ispartof American journal of mathematics, 2021-02, Vol.143 (1), p.213-226
issn 0002-9327
1080-6377
1080-6377
language eng
recordid cdi_proquest_journals_2484287937
source Project MUSE - Premium Collection
subjects Sheaves
Theorems
title A generalized Schmidt subspace theorem for closed subschemes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20Schmidt%20subspace%20theorem%20for%20closed%20subschemes&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Heier,%20Gordon&rft.date=2021-02-01&rft.volume=143&rft.issue=1&rft.spage=213&rft.epage=226&rft.pages=213-226&rft.issn=0002-9327&rft.eissn=1080-6377&rft_id=info:doi/10.1353/ajm.2021.0008&rft_dat=%3Cproquest_cross%3E2484287937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484287937&rft_id=info:pmid/&rfr_iscdi=true