A generalized Schmidt subspace theorem for closed subschemes
We prove a generalized version of Schmidt's subspace theorem for closed subschemes in general position in terms of suitably defined Seshadri constants with respect to a fixed ample divisor. Our proof builds on previous work of Evertse and Ferretti, Corvaja and Zannier, and others, and uses stan...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2021-02, Vol.143 (1), p.213-226 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 226 |
---|---|
container_issue | 1 |
container_start_page | 213 |
container_title | American journal of mathematics |
container_volume | 143 |
creator | Heier, Gordon Levin, Aaron |
description | We prove a generalized version of Schmidt's subspace theorem for closed subschemes in general position in terms of suitably defined Seshadri constants with respect to a fixed ample divisor. Our proof builds on previous work of Evertse and Ferretti, Corvaja and Zannier, and others, and uses standard techniques from algebraic geometry such as notions of positivity, blowing-ups and direct image sheaves. As an application, we recover a higher-dimensional Diophantine approximation theorem of K.~F.~Roth-type due to D.~McKinnon and M.~Roth with a significantly shortened proof, while simultaneously extending the scope of the use of Seshadri constants in this context in a natural way. |
doi_str_mv | 10.1353/ajm.2021.0008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484287937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484287937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-fc1eab0ca07cb5e917a990725c0236293ab4d31df025b6ec7205aed00c2c9d303</originalsourceid><addsrcrecordid>eNpFkEFLw0AQRhdRsFaP3gOeU2dnk24WvJSiVSh4qJ6XzWRiG5qm7iYH_fVuqOhpmJk338AT4lbCTKpc3bumnSGgnAFAcSYmEgpI50rrczGJI0yNQn0prkJoYgsacCIeFskHH9i7_e6bq2RD23ZX9UkYynB0xEm_5c5zm9SdT2jfhciMO9pyy-FaXNRuH_jmt07F-9Pj2_I5Xb-uXpaLdUoqM31ak2RXAjnQVOZspHbGgMacANUcjXJlVilZ1YB5OWfSCLnjCoCQTKVATcXdKffou8-BQ2-bbvCH-NJiVmRYaKN0pNITRb4LwXNtj37XOv9lJdhRkI2C7CjIjoIin_2lNkx9OwT-D9Zam8zYzShxdIhSjle5-gGNWmhx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484287937</pqid></control><display><type>article</type><title>A generalized Schmidt subspace theorem for closed subschemes</title><source>Project MUSE - Premium Collection</source><creator>Heier, Gordon ; Levin, Aaron</creator><creatorcontrib>Heier, Gordon ; Levin, Aaron</creatorcontrib><description>We prove a generalized version of Schmidt's subspace theorem for closed subschemes in general position in terms of suitably defined Seshadri constants with respect to a fixed ample divisor. Our proof builds on previous work of Evertse and Ferretti, Corvaja and Zannier, and others, and uses standard techniques from algebraic geometry such as notions of positivity, blowing-ups and direct image sheaves. As an application, we recover a higher-dimensional Diophantine approximation theorem of K.~F.~Roth-type due to D.~McKinnon and M.~Roth with a significantly shortened proof, while simultaneously extending the scope of the use of Seshadri constants in this context in a natural way.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2021.0008</identifier><language>eng</language><publisher>Baltimore: Johns Hopkins University Press</publisher><subject>Sheaves ; Theorems</subject><ispartof>American journal of mathematics, 2021-02, Vol.143 (1), p.213-226</ispartof><rights>Copyright © The Johns Hopkins University Press.</rights><rights>Copyright Johns Hopkins University Press Feb 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-fc1eab0ca07cb5e917a990725c0236293ab4d31df025b6ec7205aed00c2c9d303</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://muse.jhu.edu/article/777949/pdf$$EPDF$$P50$$Gprojectmuse$$H</linktopdf><linktohtml>$$Uhttps://muse.jhu.edu/article/777949$$EHTML$$P50$$Gprojectmuse$$H</linktohtml><link.rule.ids>314,778,782,21110,27907,27908,56825,57385</link.rule.ids></links><search><creatorcontrib>Heier, Gordon</creatorcontrib><creatorcontrib>Levin, Aaron</creatorcontrib><title>A generalized Schmidt subspace theorem for closed subschemes</title><title>American journal of mathematics</title><description>We prove a generalized version of Schmidt's subspace theorem for closed subschemes in general position in terms of suitably defined Seshadri constants with respect to a fixed ample divisor. Our proof builds on previous work of Evertse and Ferretti, Corvaja and Zannier, and others, and uses standard techniques from algebraic geometry such as notions of positivity, blowing-ups and direct image sheaves. As an application, we recover a higher-dimensional Diophantine approximation theorem of K.~F.~Roth-type due to D.~McKinnon and M.~Roth with a significantly shortened proof, while simultaneously extending the scope of the use of Seshadri constants in this context in a natural way.</description><subject>Sheaves</subject><subject>Theorems</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLw0AQRhdRsFaP3gOeU2dnk24WvJSiVSh4qJ6XzWRiG5qm7iYH_fVuqOhpmJk338AT4lbCTKpc3bumnSGgnAFAcSYmEgpI50rrczGJI0yNQn0prkJoYgsacCIeFskHH9i7_e6bq2RD23ZX9UkYynB0xEm_5c5zm9SdT2jfhciMO9pyy-FaXNRuH_jmt07F-9Pj2_I5Xb-uXpaLdUoqM31ak2RXAjnQVOZspHbGgMacANUcjXJlVilZ1YB5OWfSCLnjCoCQTKVATcXdKffou8-BQ2-bbvCH-NJiVmRYaKN0pNITRb4LwXNtj37XOv9lJdhRkI2C7CjIjoIin_2lNkx9OwT-D9Zam8zYzShxdIhSjle5-gGNWmhx</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Heier, Gordon</creator><creator>Levin, Aaron</creator><general>Johns Hopkins University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20210201</creationdate><title>A generalized Schmidt subspace theorem for closed subschemes</title><author>Heier, Gordon ; Levin, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-fc1eab0ca07cb5e917a990725c0236293ab4d31df025b6ec7205aed00c2c9d303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Sheaves</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heier, Gordon</creatorcontrib><creatorcontrib>Levin, Aaron</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heier, Gordon</au><au>Levin, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized Schmidt subspace theorem for closed subschemes</atitle><jtitle>American journal of mathematics</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>143</volume><issue>1</issue><spage>213</spage><epage>226</epage><pages>213-226</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><abstract>We prove a generalized version of Schmidt's subspace theorem for closed subschemes in general position in terms of suitably defined Seshadri constants with respect to a fixed ample divisor. Our proof builds on previous work of Evertse and Ferretti, Corvaja and Zannier, and others, and uses standard techniques from algebraic geometry such as notions of positivity, blowing-ups and direct image sheaves. As an application, we recover a higher-dimensional Diophantine approximation theorem of K.~F.~Roth-type due to D.~McKinnon and M.~Roth with a significantly shortened proof, while simultaneously extending the scope of the use of Seshadri constants in this context in a natural way.</abstract><cop>Baltimore</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2021.0008</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9327 |
ispartof | American journal of mathematics, 2021-02, Vol.143 (1), p.213-226 |
issn | 0002-9327 1080-6377 1080-6377 |
language | eng |
recordid | cdi_proquest_journals_2484287937 |
source | Project MUSE - Premium Collection |
subjects | Sheaves Theorems |
title | A generalized Schmidt subspace theorem for closed subschemes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20Schmidt%20subspace%20theorem%20for%20closed%20subschemes&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Heier,%20Gordon&rft.date=2021-02-01&rft.volume=143&rft.issue=1&rft.spage=213&rft.epage=226&rft.pages=213-226&rft.issn=0002-9327&rft.eissn=1080-6377&rft_id=info:doi/10.1353/ajm.2021.0008&rft_dat=%3Cproquest_cross%3E2484287937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484287937&rft_id=info:pmid/&rfr_iscdi=true |