Optimal control for a mathematical model for chemotherapy with pharmacometrics

An optimal control problem for an abstract mathematical model for cancer chemotherapy is considered. The dynamics is for a single drug and includes pharmacodynamic (PD) and pharmacokinetic (PK) models. The aim is to point out qualitative changes in the structures of optimal controls that occur as th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical modelling of natural phenomena 2020, Vol.15, p.69
Hauptverfasser: Leszczyński, Maciej, Ledzewicz, Urszula, Schättler, Heinz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 69
container_title Mathematical modelling of natural phenomena
container_volume 15
creator Leszczyński, Maciej
Ledzewicz, Urszula
Schättler, Heinz
description An optimal control problem for an abstract mathematical model for cancer chemotherapy is considered. The dynamics is for a single drug and includes pharmacodynamic (PD) and pharmacokinetic (PK) models. The aim is to point out qualitative changes in the structures of optimal controls that occur as these pharmacometric models are varied. This concerns (i) changes in the PD-model for the effectiveness of the drug ( e.g. , between a linear log-kill term and a non-linear Michaelis-Menten type E max -model) and (ii) the question how the incorporation of a mathematical model for the pharmacokinetics of the drug effects optimal controls. The general results will be illustrated and discussed in the framework of a mathematical model for anti-angiogenic therapy.
doi_str_mv 10.1051/mmnp/2020008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484275392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484275392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-a292d2d045f566ae7dc98bad9ca9ee4d61e5cc691721b404c8f3940e09cfd7973</originalsourceid><addsrcrecordid>eNotkM1LAzEQxYMoWGpv_gELXl07-diPHKWoFYq96DmkkyzdstmsSYr0vzelvcyDeY8Z3o-QRwovFCq6dG6clgwYALQ3ZEabGsqaAr0lM5ANLysu2nuyiPGQE8Cp4AAz8rWdUu_0UKAfU_BD0flQ6MLptLd59Jgt5429GJiXPjtBT6fir0_7Ytrr4DR6Z1PoMT6Qu04P0S6uOic_72_fq3W52X58rl43JXKgqdRMMsMMiKqr6lrbxqBsd9pI1NJaYWpqK8Ra0obRnQCBbcelAAsSO9PkNnPydLk7Bf97tDGpgz-GMb9UTLSCNRWXLKeeLykMPsZgOzWFXDacFAV1hqbO0NQVGv8HYWRgcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484275392</pqid></control><display><type>article</type><title>Optimal control for a mathematical model for chemotherapy with pharmacometrics</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Leszczyński, Maciej ; Ledzewicz, Urszula ; Schättler, Heinz</creator><contributor>Hubert, Florence ; Clairambault, Jean</contributor><creatorcontrib>Leszczyński, Maciej ; Ledzewicz, Urszula ; Schättler, Heinz ; Hubert, Florence ; Clairambault, Jean</creatorcontrib><description>An optimal control problem for an abstract mathematical model for cancer chemotherapy is considered. The dynamics is for a single drug and includes pharmacodynamic (PD) and pharmacokinetic (PK) models. The aim is to point out qualitative changes in the structures of optimal controls that occur as these pharmacometric models are varied. This concerns (i) changes in the PD-model for the effectiveness of the drug ( e.g. , between a linear log-kill term and a non-linear Michaelis-Menten type E max -model) and (ii) the question how the incorporation of a mathematical model for the pharmacokinetics of the drug effects optimal controls. The general results will be illustrated and discussed in the framework of a mathematical model for anti-angiogenic therapy.</description><identifier>ISSN: 0973-5348</identifier><identifier>EISSN: 1760-6101</identifier><identifier>DOI: 10.1051/mmnp/2020008</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Angiogenesis ; Antiangiogenics ; Chemotherapy ; Mathematical analysis ; Mathematical models ; Optimal control ; Pharmacodynamics ; Pharmacokinetics ; Pharmacology</subject><ispartof>Mathematical modelling of natural phenomena, 2020, Vol.15, p.69</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-a292d2d045f566ae7dc98bad9ca9ee4d61e5cc691721b404c8f3940e09cfd7973</citedby><cites>FETCH-LOGICAL-c301t-a292d2d045f566ae7dc98bad9ca9ee4d61e5cc691721b404c8f3940e09cfd7973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><contributor>Hubert, Florence</contributor><contributor>Clairambault, Jean</contributor><creatorcontrib>Leszczyński, Maciej</creatorcontrib><creatorcontrib>Ledzewicz, Urszula</creatorcontrib><creatorcontrib>Schättler, Heinz</creatorcontrib><title>Optimal control for a mathematical model for chemotherapy with pharmacometrics</title><title>Mathematical modelling of natural phenomena</title><description>An optimal control problem for an abstract mathematical model for cancer chemotherapy is considered. The dynamics is for a single drug and includes pharmacodynamic (PD) and pharmacokinetic (PK) models. The aim is to point out qualitative changes in the structures of optimal controls that occur as these pharmacometric models are varied. This concerns (i) changes in the PD-model for the effectiveness of the drug ( e.g. , between a linear log-kill term and a non-linear Michaelis-Menten type E max -model) and (ii) the question how the incorporation of a mathematical model for the pharmacokinetics of the drug effects optimal controls. The general results will be illustrated and discussed in the framework of a mathematical model for anti-angiogenic therapy.</description><subject>Angiogenesis</subject><subject>Antiangiogenics</subject><subject>Chemotherapy</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Pharmacodynamics</subject><subject>Pharmacokinetics</subject><subject>Pharmacology</subject><issn>0973-5348</issn><issn>1760-6101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkM1LAzEQxYMoWGpv_gELXl07-diPHKWoFYq96DmkkyzdstmsSYr0vzelvcyDeY8Z3o-QRwovFCq6dG6clgwYALQ3ZEabGsqaAr0lM5ANLysu2nuyiPGQE8Cp4AAz8rWdUu_0UKAfU_BD0flQ6MLptLd59Jgt5429GJiXPjtBT6fir0_7Ytrr4DR6Z1PoMT6Qu04P0S6uOic_72_fq3W52X58rl43JXKgqdRMMsMMiKqr6lrbxqBsd9pI1NJaYWpqK8Ra0obRnQCBbcelAAsSO9PkNnPydLk7Bf97tDGpgz-GMb9UTLSCNRWXLKeeLykMPsZgOzWFXDacFAV1hqbO0NQVGv8HYWRgcA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Leszczyński, Maciej</creator><creator>Ledzewicz, Urszula</creator><creator>Schättler, Heinz</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>2020</creationdate><title>Optimal control for a mathematical model for chemotherapy with pharmacometrics</title><author>Leszczyński, Maciej ; Ledzewicz, Urszula ; Schättler, Heinz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-a292d2d045f566ae7dc98bad9ca9ee4d61e5cc691721b404c8f3940e09cfd7973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angiogenesis</topic><topic>Antiangiogenics</topic><topic>Chemotherapy</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Pharmacodynamics</topic><topic>Pharmacokinetics</topic><topic>Pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leszczyński, Maciej</creatorcontrib><creatorcontrib>Ledzewicz, Urszula</creatorcontrib><creatorcontrib>Schättler, Heinz</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Mathematical modelling of natural phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leszczyński, Maciej</au><au>Ledzewicz, Urszula</au><au>Schättler, Heinz</au><au>Hubert, Florence</au><au>Clairambault, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control for a mathematical model for chemotherapy with pharmacometrics</atitle><jtitle>Mathematical modelling of natural phenomena</jtitle><date>2020</date><risdate>2020</risdate><volume>15</volume><spage>69</spage><pages>69-</pages><issn>0973-5348</issn><eissn>1760-6101</eissn><abstract>An optimal control problem for an abstract mathematical model for cancer chemotherapy is considered. The dynamics is for a single drug and includes pharmacodynamic (PD) and pharmacokinetic (PK) models. The aim is to point out qualitative changes in the structures of optimal controls that occur as these pharmacometric models are varied. This concerns (i) changes in the PD-model for the effectiveness of the drug ( e.g. , between a linear log-kill term and a non-linear Michaelis-Menten type E max -model) and (ii) the question how the incorporation of a mathematical model for the pharmacokinetics of the drug effects optimal controls. The general results will be illustrated and discussed in the framework of a mathematical model for anti-angiogenic therapy.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/mmnp/2020008</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0973-5348
ispartof Mathematical modelling of natural phenomena, 2020, Vol.15, p.69
issn 0973-5348
1760-6101
language eng
recordid cdi_proquest_journals_2484275392
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Angiogenesis
Antiangiogenics
Chemotherapy
Mathematical analysis
Mathematical models
Optimal control
Pharmacodynamics
Pharmacokinetics
Pharmacology
title Optimal control for a mathematical model for chemotherapy with pharmacometrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20for%20a%20mathematical%20model%20for%20chemotherapy%20with%20pharmacometrics&rft.jtitle=Mathematical%20modelling%20of%20natural%20phenomena&rft.au=Leszczy%C5%84ski,%20Maciej&rft.date=2020&rft.volume=15&rft.spage=69&rft.pages=69-&rft.issn=0973-5348&rft.eissn=1760-6101&rft_id=info:doi/10.1051/mmnp/2020008&rft_dat=%3Cproquest_cross%3E2484275392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484275392&rft_id=info:pmid/&rfr_iscdi=true