Optimal control for a mathematical model for chemotherapy with pharmacometrics
An optimal control problem for an abstract mathematical model for cancer chemotherapy is considered. The dynamics is for a single drug and includes pharmacodynamic (PD) and pharmacokinetic (PK) models. The aim is to point out qualitative changes in the structures of optimal controls that occur as th...
Gespeichert in:
Veröffentlicht in: | Mathematical modelling of natural phenomena 2020, Vol.15, p.69 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 69 |
container_title | Mathematical modelling of natural phenomena |
container_volume | 15 |
creator | Leszczyński, Maciej Ledzewicz, Urszula Schättler, Heinz |
description | An optimal control problem for an abstract mathematical model for cancer chemotherapy is considered. The dynamics is for a single drug and includes pharmacodynamic (PD) and pharmacokinetic (PK) models. The aim is to point out qualitative changes in the structures of optimal controls that occur as these pharmacometric models are varied. This concerns (i) changes in the PD-model for the effectiveness of the drug (
e.g.
, between a linear log-kill term and a non-linear Michaelis-Menten type
E
max
-model) and (ii) the question how the incorporation of a mathematical model for the pharmacokinetics of the drug effects optimal controls. The general results will be illustrated and discussed in the framework of a mathematical model for anti-angiogenic therapy. |
doi_str_mv | 10.1051/mmnp/2020008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484275392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484275392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-a292d2d045f566ae7dc98bad9ca9ee4d61e5cc691721b404c8f3940e09cfd7973</originalsourceid><addsrcrecordid>eNotkM1LAzEQxYMoWGpv_gELXl07-diPHKWoFYq96DmkkyzdstmsSYr0vzelvcyDeY8Z3o-QRwovFCq6dG6clgwYALQ3ZEabGsqaAr0lM5ANLysu2nuyiPGQE8Cp4AAz8rWdUu_0UKAfU_BD0flQ6MLptLd59Jgt5429GJiXPjtBT6fir0_7Ytrr4DR6Z1PoMT6Qu04P0S6uOic_72_fq3W52X58rl43JXKgqdRMMsMMiKqr6lrbxqBsd9pI1NJaYWpqK8Ra0obRnQCBbcelAAsSO9PkNnPydLk7Bf97tDGpgz-GMb9UTLSCNRWXLKeeLykMPsZgOzWFXDacFAV1hqbO0NQVGv8HYWRgcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484275392</pqid></control><display><type>article</type><title>Optimal control for a mathematical model for chemotherapy with pharmacometrics</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Leszczyński, Maciej ; Ledzewicz, Urszula ; Schättler, Heinz</creator><contributor>Hubert, Florence ; Clairambault, Jean</contributor><creatorcontrib>Leszczyński, Maciej ; Ledzewicz, Urszula ; Schättler, Heinz ; Hubert, Florence ; Clairambault, Jean</creatorcontrib><description>An optimal control problem for an abstract mathematical model for cancer chemotherapy is considered. The dynamics is for a single drug and includes pharmacodynamic (PD) and pharmacokinetic (PK) models. The aim is to point out qualitative changes in the structures of optimal controls that occur as these pharmacometric models are varied. This concerns (i) changes in the PD-model for the effectiveness of the drug (
e.g.
, between a linear log-kill term and a non-linear Michaelis-Menten type
E
max
-model) and (ii) the question how the incorporation of a mathematical model for the pharmacokinetics of the drug effects optimal controls. The general results will be illustrated and discussed in the framework of a mathematical model for anti-angiogenic therapy.</description><identifier>ISSN: 0973-5348</identifier><identifier>EISSN: 1760-6101</identifier><identifier>DOI: 10.1051/mmnp/2020008</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Angiogenesis ; Antiangiogenics ; Chemotherapy ; Mathematical analysis ; Mathematical models ; Optimal control ; Pharmacodynamics ; Pharmacokinetics ; Pharmacology</subject><ispartof>Mathematical modelling of natural phenomena, 2020, Vol.15, p.69</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-a292d2d045f566ae7dc98bad9ca9ee4d61e5cc691721b404c8f3940e09cfd7973</citedby><cites>FETCH-LOGICAL-c301t-a292d2d045f566ae7dc98bad9ca9ee4d61e5cc691721b404c8f3940e09cfd7973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><contributor>Hubert, Florence</contributor><contributor>Clairambault, Jean</contributor><creatorcontrib>Leszczyński, Maciej</creatorcontrib><creatorcontrib>Ledzewicz, Urszula</creatorcontrib><creatorcontrib>Schättler, Heinz</creatorcontrib><title>Optimal control for a mathematical model for chemotherapy with pharmacometrics</title><title>Mathematical modelling of natural phenomena</title><description>An optimal control problem for an abstract mathematical model for cancer chemotherapy is considered. The dynamics is for a single drug and includes pharmacodynamic (PD) and pharmacokinetic (PK) models. The aim is to point out qualitative changes in the structures of optimal controls that occur as these pharmacometric models are varied. This concerns (i) changes in the PD-model for the effectiveness of the drug (
e.g.
, between a linear log-kill term and a non-linear Michaelis-Menten type
E
max
-model) and (ii) the question how the incorporation of a mathematical model for the pharmacokinetics of the drug effects optimal controls. The general results will be illustrated and discussed in the framework of a mathematical model for anti-angiogenic therapy.</description><subject>Angiogenesis</subject><subject>Antiangiogenics</subject><subject>Chemotherapy</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Pharmacodynamics</subject><subject>Pharmacokinetics</subject><subject>Pharmacology</subject><issn>0973-5348</issn><issn>1760-6101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkM1LAzEQxYMoWGpv_gELXl07-diPHKWoFYq96DmkkyzdstmsSYr0vzelvcyDeY8Z3o-QRwovFCq6dG6clgwYALQ3ZEabGsqaAr0lM5ANLysu2nuyiPGQE8Cp4AAz8rWdUu_0UKAfU_BD0flQ6MLptLd59Jgt5429GJiXPjtBT6fir0_7Ytrr4DR6Z1PoMT6Qu04P0S6uOic_72_fq3W52X58rl43JXKgqdRMMsMMiKqr6lrbxqBsd9pI1NJaYWpqK8Ra0obRnQCBbcelAAsSO9PkNnPydLk7Bf97tDGpgz-GMb9UTLSCNRWXLKeeLykMPsZgOzWFXDacFAV1hqbO0NQVGv8HYWRgcA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Leszczyński, Maciej</creator><creator>Ledzewicz, Urszula</creator><creator>Schättler, Heinz</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>2020</creationdate><title>Optimal control for a mathematical model for chemotherapy with pharmacometrics</title><author>Leszczyński, Maciej ; Ledzewicz, Urszula ; Schättler, Heinz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-a292d2d045f566ae7dc98bad9ca9ee4d61e5cc691721b404c8f3940e09cfd7973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angiogenesis</topic><topic>Antiangiogenics</topic><topic>Chemotherapy</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Pharmacodynamics</topic><topic>Pharmacokinetics</topic><topic>Pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leszczyński, Maciej</creatorcontrib><creatorcontrib>Ledzewicz, Urszula</creatorcontrib><creatorcontrib>Schättler, Heinz</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Mathematical modelling of natural phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leszczyński, Maciej</au><au>Ledzewicz, Urszula</au><au>Schättler, Heinz</au><au>Hubert, Florence</au><au>Clairambault, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control for a mathematical model for chemotherapy with pharmacometrics</atitle><jtitle>Mathematical modelling of natural phenomena</jtitle><date>2020</date><risdate>2020</risdate><volume>15</volume><spage>69</spage><pages>69-</pages><issn>0973-5348</issn><eissn>1760-6101</eissn><abstract>An optimal control problem for an abstract mathematical model for cancer chemotherapy is considered. The dynamics is for a single drug and includes pharmacodynamic (PD) and pharmacokinetic (PK) models. The aim is to point out qualitative changes in the structures of optimal controls that occur as these pharmacometric models are varied. This concerns (i) changes in the PD-model for the effectiveness of the drug (
e.g.
, between a linear log-kill term and a non-linear Michaelis-Menten type
E
max
-model) and (ii) the question how the incorporation of a mathematical model for the pharmacokinetics of the drug effects optimal controls. The general results will be illustrated and discussed in the framework of a mathematical model for anti-angiogenic therapy.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/mmnp/2020008</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0973-5348 |
ispartof | Mathematical modelling of natural phenomena, 2020, Vol.15, p.69 |
issn | 0973-5348 1760-6101 |
language | eng |
recordid | cdi_proquest_journals_2484275392 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Angiogenesis Antiangiogenics Chemotherapy Mathematical analysis Mathematical models Optimal control Pharmacodynamics Pharmacokinetics Pharmacology |
title | Optimal control for a mathematical model for chemotherapy with pharmacometrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20for%20a%20mathematical%20model%20for%20chemotherapy%20with%20pharmacometrics&rft.jtitle=Mathematical%20modelling%20of%20natural%20phenomena&rft.au=Leszczy%C5%84ski,%20Maciej&rft.date=2020&rft.volume=15&rft.spage=69&rft.pages=69-&rft.issn=0973-5348&rft.eissn=1760-6101&rft_id=info:doi/10.1051/mmnp/2020008&rft_dat=%3Cproquest_cross%3E2484275392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484275392&rft_id=info:pmid/&rfr_iscdi=true |