Bayesian sequential testing with expectation constraints

We study a stopping problem arising from a sequential testing of two simple hypotheses H 0 and H 1 on the drift rate of a Brownian motion. We impose an expectation constraint on the stopping rules allowed and show that an optimal stopping rule satisfying the constraint can be found among the rules o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2020, Vol.26, p.51
Hauptverfasser: Ankirchner, Stefan, Klein, Maike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 51
container_title ESAIM. Control, optimisation and calculus of variations
container_volume 26
creator Ankirchner, Stefan
Klein, Maike
description We study a stopping problem arising from a sequential testing of two simple hypotheses H 0 and H 1 on the drift rate of a Brownian motion. We impose an expectation constraint on the stopping rules allowed and show that an optimal stopping rule satisfying the constraint can be found among the rules of the following type: stop if the posterior probability for H 1 attains a given lower or upper barrier; or stop if the posterior probability comes back to a fixed intermediate point after a sufficiently large excursion. Stopping at the intermediate point means that the testing is abandoned without accepting H 0 or H 1 . In contrast to the unconstrained case, optimal stopping rules, in general, cannot be found among interval exit times. Thus, optimal stopping rules in the constrained case qualitatively differ from optimal rules in the unconstrained case.
doi_str_mv 10.1051/cocv/2019045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484272347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484272347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-a8e7befe798fd17ecae90ea03632fab6f19061add12012617b84ecd2c7496bd13</originalsourceid><addsrcrecordid>eNotkMFOAyEURYnRxFrd-QGTuHUsDygwS22smjRxo2vCMA-lqUwFqvbvnUm7undx897JIeQa6B3QOcxc735mjEJDxfyETIBJVnOu1OnYG1ZrgOacXOS8phQkF2JC9IPdYw42Vhm_dxhLsJuqYC4hflS_oXxW-LdFV2wJfaxcH3NJNsSSL8mZt5uMV8eckvfl49viuV69Pr0s7le14xRKbTWqFj2qRvsOFDqLDUVLueTM21b6AVaC7ToYuJkE1WqBrmNOiUa2HfApuTnc3aZ-AMzFrPtdisNLw4QWTDEu1LC6Paxc6nNO6M02hS-b9gaoGd2Y0Y05uuH_4OBYQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484272347</pqid></control><display><type>article</type><title>Bayesian sequential testing with expectation constraints</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ankirchner, Stefan ; Klein, Maike</creator><creatorcontrib>Ankirchner, Stefan ; Klein, Maike</creatorcontrib><description>We study a stopping problem arising from a sequential testing of two simple hypotheses H 0 and H 1 on the drift rate of a Brownian motion. We impose an expectation constraint on the stopping rules allowed and show that an optimal stopping rule satisfying the constraint can be found among the rules of the following type: stop if the posterior probability for H 1 attains a given lower or upper barrier; or stop if the posterior probability comes back to a fixed intermediate point after a sufficiently large excursion. Stopping at the intermediate point means that the testing is abandoned without accepting H 0 or H 1 . In contrast to the unconstrained case, optimal stopping rules, in general, cannot be found among interval exit times. Thus, optimal stopping rules in the constrained case qualitatively differ from optimal rules in the unconstrained case.</description><identifier>ISSN: 1292-8119</identifier><identifier>EISSN: 1262-3377</identifier><identifier>DOI: 10.1051/cocv/2019045</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Brownian motion ; Conditional probability ; Constraints ; Drift rate ; Purchasing</subject><ispartof>ESAIM. Control, optimisation and calculus of variations, 2020, Vol.26, p.51</ispartof><rights>2020. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-cocv.org/articles/cocv/abs/2020/01/cocv180151/cocv180151.html .</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-a8e7befe798fd17ecae90ea03632fab6f19061add12012617b84ecd2c7496bd13</citedby><cites>FETCH-LOGICAL-c301t-a8e7befe798fd17ecae90ea03632fab6f19061add12012617b84ecd2c7496bd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Ankirchner, Stefan</creatorcontrib><creatorcontrib>Klein, Maike</creatorcontrib><title>Bayesian sequential testing with expectation constraints</title><title>ESAIM. Control, optimisation and calculus of variations</title><description>We study a stopping problem arising from a sequential testing of two simple hypotheses H 0 and H 1 on the drift rate of a Brownian motion. We impose an expectation constraint on the stopping rules allowed and show that an optimal stopping rule satisfying the constraint can be found among the rules of the following type: stop if the posterior probability for H 1 attains a given lower or upper barrier; or stop if the posterior probability comes back to a fixed intermediate point after a sufficiently large excursion. Stopping at the intermediate point means that the testing is abandoned without accepting H 0 or H 1 . In contrast to the unconstrained case, optimal stopping rules, in general, cannot be found among interval exit times. Thus, optimal stopping rules in the constrained case qualitatively differ from optimal rules in the unconstrained case.</description><subject>Brownian motion</subject><subject>Conditional probability</subject><subject>Constraints</subject><subject>Drift rate</subject><subject>Purchasing</subject><issn>1292-8119</issn><issn>1262-3377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkMFOAyEURYnRxFrd-QGTuHUsDygwS22smjRxo2vCMA-lqUwFqvbvnUm7undx897JIeQa6B3QOcxc735mjEJDxfyETIBJVnOu1OnYG1ZrgOacXOS8phQkF2JC9IPdYw42Vhm_dxhLsJuqYC4hflS_oXxW-LdFV2wJfaxcH3NJNsSSL8mZt5uMV8eckvfl49viuV69Pr0s7le14xRKbTWqFj2qRvsOFDqLDUVLueTM21b6AVaC7ToYuJkE1WqBrmNOiUa2HfApuTnc3aZ-AMzFrPtdisNLw4QWTDEu1LC6Paxc6nNO6M02hS-b9gaoGd2Y0Y05uuH_4OBYQA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ankirchner, Stefan</creator><creator>Klein, Maike</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2020</creationdate><title>Bayesian sequential testing with expectation constraints</title><author>Ankirchner, Stefan ; Klein, Maike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-a8e7befe798fd17ecae90ea03632fab6f19061add12012617b84ecd2c7496bd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brownian motion</topic><topic>Conditional probability</topic><topic>Constraints</topic><topic>Drift rate</topic><topic>Purchasing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ankirchner, Stefan</creatorcontrib><creatorcontrib>Klein, Maike</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ankirchner, Stefan</au><au>Klein, Maike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian sequential testing with expectation constraints</atitle><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle><date>2020</date><risdate>2020</risdate><volume>26</volume><spage>51</spage><pages>51-</pages><issn>1292-8119</issn><eissn>1262-3377</eissn><abstract>We study a stopping problem arising from a sequential testing of two simple hypotheses H 0 and H 1 on the drift rate of a Brownian motion. We impose an expectation constraint on the stopping rules allowed and show that an optimal stopping rule satisfying the constraint can be found among the rules of the following type: stop if the posterior probability for H 1 attains a given lower or upper barrier; or stop if the posterior probability comes back to a fixed intermediate point after a sufficiently large excursion. Stopping at the intermediate point means that the testing is abandoned without accepting H 0 or H 1 . In contrast to the unconstrained case, optimal stopping rules, in general, cannot be found among interval exit times. Thus, optimal stopping rules in the constrained case qualitatively differ from optimal rules in the unconstrained case.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/cocv/2019045</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1292-8119
ispartof ESAIM. Control, optimisation and calculus of variations, 2020, Vol.26, p.51
issn 1292-8119
1262-3377
language eng
recordid cdi_proquest_journals_2484272347
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Brownian motion
Conditional probability
Constraints
Drift rate
Purchasing
title Bayesian sequential testing with expectation constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20sequential%20testing%20with%20expectation%20constraints&rft.jtitle=ESAIM.%20Control,%20optimisation%20and%20calculus%20of%20variations&rft.au=Ankirchner,%20Stefan&rft.date=2020&rft.volume=26&rft.spage=51&rft.pages=51-&rft.issn=1292-8119&rft.eissn=1262-3377&rft_id=info:doi/10.1051/cocv/2019045&rft_dat=%3Cproquest_cross%3E2484272347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484272347&rft_id=info:pmid/&rfr_iscdi=true