Bayesian sequential testing with expectation constraints
We study a stopping problem arising from a sequential testing of two simple hypotheses H 0 and H 1 on the drift rate of a Brownian motion. We impose an expectation constraint on the stopping rules allowed and show that an optimal stopping rule satisfying the constraint can be found among the rules o...
Gespeichert in:
Veröffentlicht in: | ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2020, Vol.26, p.51 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 51 |
container_title | ESAIM. Control, optimisation and calculus of variations |
container_volume | 26 |
creator | Ankirchner, Stefan Klein, Maike |
description | We study a stopping problem arising from a sequential testing of two simple hypotheses
H
0
and
H
1
on the drift rate of a Brownian motion. We impose an expectation constraint on the stopping rules allowed and show that an optimal stopping rule satisfying the constraint can be found among the rules of the following type: stop if the posterior probability for
H
1
attains a given lower or upper barrier; or stop if the posterior probability comes back to a fixed intermediate point after a sufficiently large excursion. Stopping at the intermediate point means that the testing is abandoned without accepting
H
0
or
H
1
. In contrast to the unconstrained case, optimal stopping rules, in general, cannot be found among interval exit times. Thus, optimal stopping rules in the constrained case qualitatively differ from optimal rules in the unconstrained case. |
doi_str_mv | 10.1051/cocv/2019045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484272347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484272347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-a8e7befe798fd17ecae90ea03632fab6f19061add12012617b84ecd2c7496bd13</originalsourceid><addsrcrecordid>eNotkMFOAyEURYnRxFrd-QGTuHUsDygwS22smjRxo2vCMA-lqUwFqvbvnUm7undx897JIeQa6B3QOcxc735mjEJDxfyETIBJVnOu1OnYG1ZrgOacXOS8phQkF2JC9IPdYw42Vhm_dxhLsJuqYC4hflS_oXxW-LdFV2wJfaxcH3NJNsSSL8mZt5uMV8eckvfl49viuV69Pr0s7le14xRKbTWqFj2qRvsOFDqLDUVLueTM21b6AVaC7ToYuJkE1WqBrmNOiUa2HfApuTnc3aZ-AMzFrPtdisNLw4QWTDEu1LC6Paxc6nNO6M02hS-b9gaoGd2Y0Y05uuH_4OBYQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484272347</pqid></control><display><type>article</type><title>Bayesian sequential testing with expectation constraints</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ankirchner, Stefan ; Klein, Maike</creator><creatorcontrib>Ankirchner, Stefan ; Klein, Maike</creatorcontrib><description>We study a stopping problem arising from a sequential testing of two simple hypotheses
H
0
and
H
1
on the drift rate of a Brownian motion. We impose an expectation constraint on the stopping rules allowed and show that an optimal stopping rule satisfying the constraint can be found among the rules of the following type: stop if the posterior probability for
H
1
attains a given lower or upper barrier; or stop if the posterior probability comes back to a fixed intermediate point after a sufficiently large excursion. Stopping at the intermediate point means that the testing is abandoned without accepting
H
0
or
H
1
. In contrast to the unconstrained case, optimal stopping rules, in general, cannot be found among interval exit times. Thus, optimal stopping rules in the constrained case qualitatively differ from optimal rules in the unconstrained case.</description><identifier>ISSN: 1292-8119</identifier><identifier>EISSN: 1262-3377</identifier><identifier>DOI: 10.1051/cocv/2019045</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Brownian motion ; Conditional probability ; Constraints ; Drift rate ; Purchasing</subject><ispartof>ESAIM. Control, optimisation and calculus of variations, 2020, Vol.26, p.51</ispartof><rights>2020. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-cocv.org/articles/cocv/abs/2020/01/cocv180151/cocv180151.html .</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-a8e7befe798fd17ecae90ea03632fab6f19061add12012617b84ecd2c7496bd13</citedby><cites>FETCH-LOGICAL-c301t-a8e7befe798fd17ecae90ea03632fab6f19061add12012617b84ecd2c7496bd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Ankirchner, Stefan</creatorcontrib><creatorcontrib>Klein, Maike</creatorcontrib><title>Bayesian sequential testing with expectation constraints</title><title>ESAIM. Control, optimisation and calculus of variations</title><description>We study a stopping problem arising from a sequential testing of two simple hypotheses
H
0
and
H
1
on the drift rate of a Brownian motion. We impose an expectation constraint on the stopping rules allowed and show that an optimal stopping rule satisfying the constraint can be found among the rules of the following type: stop if the posterior probability for
H
1
attains a given lower or upper barrier; or stop if the posterior probability comes back to a fixed intermediate point after a sufficiently large excursion. Stopping at the intermediate point means that the testing is abandoned without accepting
H
0
or
H
1
. In contrast to the unconstrained case, optimal stopping rules, in general, cannot be found among interval exit times. Thus, optimal stopping rules in the constrained case qualitatively differ from optimal rules in the unconstrained case.</description><subject>Brownian motion</subject><subject>Conditional probability</subject><subject>Constraints</subject><subject>Drift rate</subject><subject>Purchasing</subject><issn>1292-8119</issn><issn>1262-3377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkMFOAyEURYnRxFrd-QGTuHUsDygwS22smjRxo2vCMA-lqUwFqvbvnUm7undx897JIeQa6B3QOcxc735mjEJDxfyETIBJVnOu1OnYG1ZrgOacXOS8phQkF2JC9IPdYw42Vhm_dxhLsJuqYC4hflS_oXxW-LdFV2wJfaxcH3NJNsSSL8mZt5uMV8eckvfl49viuV69Pr0s7le14xRKbTWqFj2qRvsOFDqLDUVLueTM21b6AVaC7ToYuJkE1WqBrmNOiUa2HfApuTnc3aZ-AMzFrPtdisNLw4QWTDEu1LC6Paxc6nNO6M02hS-b9gaoGd2Y0Y05uuH_4OBYQA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ankirchner, Stefan</creator><creator>Klein, Maike</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2020</creationdate><title>Bayesian sequential testing with expectation constraints</title><author>Ankirchner, Stefan ; Klein, Maike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-a8e7befe798fd17ecae90ea03632fab6f19061add12012617b84ecd2c7496bd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brownian motion</topic><topic>Conditional probability</topic><topic>Constraints</topic><topic>Drift rate</topic><topic>Purchasing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ankirchner, Stefan</creatorcontrib><creatorcontrib>Klein, Maike</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ankirchner, Stefan</au><au>Klein, Maike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian sequential testing with expectation constraints</atitle><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle><date>2020</date><risdate>2020</risdate><volume>26</volume><spage>51</spage><pages>51-</pages><issn>1292-8119</issn><eissn>1262-3377</eissn><abstract>We study a stopping problem arising from a sequential testing of two simple hypotheses
H
0
and
H
1
on the drift rate of a Brownian motion. We impose an expectation constraint on the stopping rules allowed and show that an optimal stopping rule satisfying the constraint can be found among the rules of the following type: stop if the posterior probability for
H
1
attains a given lower or upper barrier; or stop if the posterior probability comes back to a fixed intermediate point after a sufficiently large excursion. Stopping at the intermediate point means that the testing is abandoned without accepting
H
0
or
H
1
. In contrast to the unconstrained case, optimal stopping rules, in general, cannot be found among interval exit times. Thus, optimal stopping rules in the constrained case qualitatively differ from optimal rules in the unconstrained case.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/cocv/2019045</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1292-8119 |
ispartof | ESAIM. Control, optimisation and calculus of variations, 2020, Vol.26, p.51 |
issn | 1292-8119 1262-3377 |
language | eng |
recordid | cdi_proquest_journals_2484272347 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Brownian motion Conditional probability Constraints Drift rate Purchasing |
title | Bayesian sequential testing with expectation constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20sequential%20testing%20with%20expectation%20constraints&rft.jtitle=ESAIM.%20Control,%20optimisation%20and%20calculus%20of%20variations&rft.au=Ankirchner,%20Stefan&rft.date=2020&rft.volume=26&rft.spage=51&rft.pages=51-&rft.issn=1292-8119&rft.eissn=1262-3377&rft_id=info:doi/10.1051/cocv/2019045&rft_dat=%3Cproquest_cross%3E2484272347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484272347&rft_id=info:pmid/&rfr_iscdi=true |