Effect of mixing glass frits on electrical property and microstructure of sintered Cu conductive thick film

The resistivity of the sintered Cu thick film decreases with the weight percentage of the SiO2–ZnO–B2O3 additive in the mixing glass frits up to 50 wt%. As the weight percentage of the SiO2–ZnO–B2O3 additive in the mixing glass frits is over 50 wt%, the resistivity of the sintered Cu thick films is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2021-04, Vol.104 (4), p.1707-1715
Hauptverfasser: Wang, Jyun Yang, Lin, Yi Xuan, Wu, Chen Yu, Chiu, Chung Yu, Lee, Chia Hung, Yeh, Ching Yu, Huang, Bo Rong, Liu, Cheng Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1715
container_issue 4
container_start_page 1707
container_title Journal of the American Ceramic Society
container_volume 104
creator Wang, Jyun Yang
Lin, Yi Xuan
Wu, Chen Yu
Chiu, Chung Yu
Lee, Chia Hung
Yeh, Ching Yu
Huang, Bo Rong
Liu, Cheng Yi
description The resistivity of the sintered Cu thick film decreases with the weight percentage of the SiO2–ZnO–B2O3 additive in the mixing glass frits up to 50 wt%. As the weight percentage of the SiO2–ZnO–B2O3 additive in the mixing glass frits is over 50 wt%, the resistivity of the sintered Cu thick films is quite similar. The lowest resistivity (6.62 × 10−6 Ω‐cm) of the sintered Cu thick films occurs at 75 wt% of the SiO2–ZnO–B2O3 additive. Also, we observe the extensive glass phase framing around the large Cu grains in the Cu thick films sintered with low SiO2–ZnO–B2O3 additives (less than 50 wt%) narrows the cross‐section area of the electrical path. On the contrary, the round‐shaped glass phase solidified among the small Cu grains allows a larger cross‐section of the electrical path (a possible lower resistivity) for the Cu thick films sintered with higher SiO2–ZnO–B2O3 additives (larger than 50 wt%). The above results imply that the resistivity of the sintered Cu thick film correlates well with the microstructure (Cu grain size and the glass/Cu composite structure) of the sintered Cu thick films. Twin grain boundaries can clearly be observed in the sintered Cu thick films, especially for the Cu thick film sintered with the higher SiO2–ZnO–B2O3 additives. Owing to small Cu grains size and high density of Cu grain boundary, the probability of the grain boundaries with a high grain‐boundary energy in the Cu thick film sintered with high SiO2–ZnO–B2O3 additive would be much larger, comparing to that in the Cu thick film sintered with low SiO2–ZnO–B2O3 additive. Thus, more annealing twin boundaries formed in the Cu thick film sintered with high SiO2–ZnO–B2O3 additive. Hence, the formation of the twin boundary in the sintered Cu thick film helps reducing the resistivity of the sintered Cu films.
doi_str_mv 10.1111/jace.17586
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484176331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484176331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3016-8adebca95583d66e95de511ee51943402145fbedb4712c99ce774b437d20b5163</originalsourceid><addsrcrecordid>eNp9kEtPwzAMxyMEEmNw4RNE4obUEbdJH8epGi9N4gLnKk2cka1rR9IC-_aklDM-2LL88-tPyDWwBQS720qFC8hEnp6QGQgBUVxAekpmjLE4yvKYnZML77chhSLnM7JbGYOqp52he_tt2w3dNNJ7apztPe1aik0oO6tkQw-uO6Drj1S2OtDKdb53g-oHh2O_t22PDjUtB6q6VoeK_UTav1u1o8Y2-0tyZmTj8eovzsnb_eq1fIzWLw9P5XIdqYRBGuVSY61kIUSe6DTFQmgUABhcwRPOYuDC1KhrnkGsikJhlvGaJ5mOWS0gTebkZpobDv4Y0PfVthtcG1ZWMc85ZGmSQKBuJ2r8wzs01cHZvXTHClg1ilmNYla_YgYYJvjLNnj8h6yel-Vq6vkBu_B36Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484176331</pqid></control><display><type>article</type><title>Effect of mixing glass frits on electrical property and microstructure of sintered Cu conductive thick film</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Jyun Yang ; Lin, Yi Xuan ; Wu, Chen Yu ; Chiu, Chung Yu ; Lee, Chia Hung ; Yeh, Ching Yu ; Huang, Bo Rong ; Liu, Cheng Yi</creator><creatorcontrib>Wang, Jyun Yang ; Lin, Yi Xuan ; Wu, Chen Yu ; Chiu, Chung Yu ; Lee, Chia Hung ; Yeh, Ching Yu ; Huang, Bo Rong ; Liu, Cheng Yi</creatorcontrib><description>The resistivity of the sintered Cu thick film decreases with the weight percentage of the SiO2–ZnO–B2O3 additive in the mixing glass frits up to 50 wt%. As the weight percentage of the SiO2–ZnO–B2O3 additive in the mixing glass frits is over 50 wt%, the resistivity of the sintered Cu thick films is quite similar. The lowest resistivity (6.62 × 10−6 Ω‐cm) of the sintered Cu thick films occurs at 75 wt% of the SiO2–ZnO–B2O3 additive. Also, we observe the extensive glass phase framing around the large Cu grains in the Cu thick films sintered with low SiO2–ZnO–B2O3 additives (less than 50 wt%) narrows the cross‐section area of the electrical path. On the contrary, the round‐shaped glass phase solidified among the small Cu grains allows a larger cross‐section of the electrical path (a possible lower resistivity) for the Cu thick films sintered with higher SiO2–ZnO–B2O3 additives (larger than 50 wt%). The above results imply that the resistivity of the sintered Cu thick film correlates well with the microstructure (Cu grain size and the glass/Cu composite structure) of the sintered Cu thick films. Twin grain boundaries can clearly be observed in the sintered Cu thick films, especially for the Cu thick film sintered with the higher SiO2–ZnO–B2O3 additives. Owing to small Cu grains size and high density of Cu grain boundary, the probability of the grain boundaries with a high grain‐boundary energy in the Cu thick film sintered with high SiO2–ZnO–B2O3 additive would be much larger, comparing to that in the Cu thick film sintered with low SiO2–ZnO–B2O3 additive. Thus, more annealing twin boundaries formed in the Cu thick film sintered with high SiO2–ZnO–B2O3 additive. Hence, the formation of the twin boundary in the sintered Cu thick film helps reducing the resistivity of the sintered Cu films.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17586</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Additives ; Boron oxides ; Composite structures ; Electrical resistivity ; Grain boundaries ; Grain size ; Microstructure ; Silicon dioxide ; Sintering ; Thick films ; Twin boundaries ; Weight ; Zinc oxide</subject><ispartof>Journal of the American Ceramic Society, 2021-04, Vol.104 (4), p.1707-1715</ispartof><rights>2020 The American Ceramic Society</rights><rights>2021 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3016-8adebca95583d66e95de511ee51943402145fbedb4712c99ce774b437d20b5163</citedby><cites>FETCH-LOGICAL-c3016-8adebca95583d66e95de511ee51943402145fbedb4712c99ce774b437d20b5163</cites><orcidid>0000-0002-0930-2609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.17586$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.17586$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Wang, Jyun Yang</creatorcontrib><creatorcontrib>Lin, Yi Xuan</creatorcontrib><creatorcontrib>Wu, Chen Yu</creatorcontrib><creatorcontrib>Chiu, Chung Yu</creatorcontrib><creatorcontrib>Lee, Chia Hung</creatorcontrib><creatorcontrib>Yeh, Ching Yu</creatorcontrib><creatorcontrib>Huang, Bo Rong</creatorcontrib><creatorcontrib>Liu, Cheng Yi</creatorcontrib><title>Effect of mixing glass frits on electrical property and microstructure of sintered Cu conductive thick film</title><title>Journal of the American Ceramic Society</title><description>The resistivity of the sintered Cu thick film decreases with the weight percentage of the SiO2–ZnO–B2O3 additive in the mixing glass frits up to 50 wt%. As the weight percentage of the SiO2–ZnO–B2O3 additive in the mixing glass frits is over 50 wt%, the resistivity of the sintered Cu thick films is quite similar. The lowest resistivity (6.62 × 10−6 Ω‐cm) of the sintered Cu thick films occurs at 75 wt% of the SiO2–ZnO–B2O3 additive. Also, we observe the extensive glass phase framing around the large Cu grains in the Cu thick films sintered with low SiO2–ZnO–B2O3 additives (less than 50 wt%) narrows the cross‐section area of the electrical path. On the contrary, the round‐shaped glass phase solidified among the small Cu grains allows a larger cross‐section of the electrical path (a possible lower resistivity) for the Cu thick films sintered with higher SiO2–ZnO–B2O3 additives (larger than 50 wt%). The above results imply that the resistivity of the sintered Cu thick film correlates well with the microstructure (Cu grain size and the glass/Cu composite structure) of the sintered Cu thick films. Twin grain boundaries can clearly be observed in the sintered Cu thick films, especially for the Cu thick film sintered with the higher SiO2–ZnO–B2O3 additives. Owing to small Cu grains size and high density of Cu grain boundary, the probability of the grain boundaries with a high grain‐boundary energy in the Cu thick film sintered with high SiO2–ZnO–B2O3 additive would be much larger, comparing to that in the Cu thick film sintered with low SiO2–ZnO–B2O3 additive. Thus, more annealing twin boundaries formed in the Cu thick film sintered with high SiO2–ZnO–B2O3 additive. Hence, the formation of the twin boundary in the sintered Cu thick film helps reducing the resistivity of the sintered Cu films.</description><subject>Additives</subject><subject>Boron oxides</subject><subject>Composite structures</subject><subject>Electrical resistivity</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Microstructure</subject><subject>Silicon dioxide</subject><subject>Sintering</subject><subject>Thick films</subject><subject>Twin boundaries</subject><subject>Weight</subject><subject>Zinc oxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAMxyMEEmNw4RNE4obUEbdJH8epGi9N4gLnKk2cka1rR9IC-_aklDM-2LL88-tPyDWwBQS720qFC8hEnp6QGQgBUVxAekpmjLE4yvKYnZML77chhSLnM7JbGYOqp52he_tt2w3dNNJ7apztPe1aik0oO6tkQw-uO6Drj1S2OtDKdb53g-oHh2O_t22PDjUtB6q6VoeK_UTav1u1o8Y2-0tyZmTj8eovzsnb_eq1fIzWLw9P5XIdqYRBGuVSY61kIUSe6DTFQmgUABhcwRPOYuDC1KhrnkGsikJhlvGaJ5mOWS0gTebkZpobDv4Y0PfVthtcG1ZWMc85ZGmSQKBuJ2r8wzs01cHZvXTHClg1ilmNYla_YgYYJvjLNnj8h6yel-Vq6vkBu_B36Q</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Wang, Jyun Yang</creator><creator>Lin, Yi Xuan</creator><creator>Wu, Chen Yu</creator><creator>Chiu, Chung Yu</creator><creator>Lee, Chia Hung</creator><creator>Yeh, Ching Yu</creator><creator>Huang, Bo Rong</creator><creator>Liu, Cheng Yi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0930-2609</orcidid></search><sort><creationdate>202104</creationdate><title>Effect of mixing glass frits on electrical property and microstructure of sintered Cu conductive thick film</title><author>Wang, Jyun Yang ; Lin, Yi Xuan ; Wu, Chen Yu ; Chiu, Chung Yu ; Lee, Chia Hung ; Yeh, Ching Yu ; Huang, Bo Rong ; Liu, Cheng Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3016-8adebca95583d66e95de511ee51943402145fbedb4712c99ce774b437d20b5163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additives</topic><topic>Boron oxides</topic><topic>Composite structures</topic><topic>Electrical resistivity</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Microstructure</topic><topic>Silicon dioxide</topic><topic>Sintering</topic><topic>Thick films</topic><topic>Twin boundaries</topic><topic>Weight</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jyun Yang</creatorcontrib><creatorcontrib>Lin, Yi Xuan</creatorcontrib><creatorcontrib>Wu, Chen Yu</creatorcontrib><creatorcontrib>Chiu, Chung Yu</creatorcontrib><creatorcontrib>Lee, Chia Hung</creatorcontrib><creatorcontrib>Yeh, Ching Yu</creatorcontrib><creatorcontrib>Huang, Bo Rong</creatorcontrib><creatorcontrib>Liu, Cheng Yi</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jyun Yang</au><au>Lin, Yi Xuan</au><au>Wu, Chen Yu</au><au>Chiu, Chung Yu</au><au>Lee, Chia Hung</au><au>Yeh, Ching Yu</au><au>Huang, Bo Rong</au><au>Liu, Cheng Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of mixing glass frits on electrical property and microstructure of sintered Cu conductive thick film</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2021-04</date><risdate>2021</risdate><volume>104</volume><issue>4</issue><spage>1707</spage><epage>1715</epage><pages>1707-1715</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The resistivity of the sintered Cu thick film decreases with the weight percentage of the SiO2–ZnO–B2O3 additive in the mixing glass frits up to 50 wt%. As the weight percentage of the SiO2–ZnO–B2O3 additive in the mixing glass frits is over 50 wt%, the resistivity of the sintered Cu thick films is quite similar. The lowest resistivity (6.62 × 10−6 Ω‐cm) of the sintered Cu thick films occurs at 75 wt% of the SiO2–ZnO–B2O3 additive. Also, we observe the extensive glass phase framing around the large Cu grains in the Cu thick films sintered with low SiO2–ZnO–B2O3 additives (less than 50 wt%) narrows the cross‐section area of the electrical path. On the contrary, the round‐shaped glass phase solidified among the small Cu grains allows a larger cross‐section of the electrical path (a possible lower resistivity) for the Cu thick films sintered with higher SiO2–ZnO–B2O3 additives (larger than 50 wt%). The above results imply that the resistivity of the sintered Cu thick film correlates well with the microstructure (Cu grain size and the glass/Cu composite structure) of the sintered Cu thick films. Twin grain boundaries can clearly be observed in the sintered Cu thick films, especially for the Cu thick film sintered with the higher SiO2–ZnO–B2O3 additives. Owing to small Cu grains size and high density of Cu grain boundary, the probability of the grain boundaries with a high grain‐boundary energy in the Cu thick film sintered with high SiO2–ZnO–B2O3 additive would be much larger, comparing to that in the Cu thick film sintered with low SiO2–ZnO–B2O3 additive. Thus, more annealing twin boundaries formed in the Cu thick film sintered with high SiO2–ZnO–B2O3 additive. Hence, the formation of the twin boundary in the sintered Cu thick film helps reducing the resistivity of the sintered Cu films.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17586</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0930-2609</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2021-04, Vol.104 (4), p.1707-1715
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2484176331
source Wiley Online Library Journals Frontfile Complete
subjects Additives
Boron oxides
Composite structures
Electrical resistivity
Grain boundaries
Grain size
Microstructure
Silicon dioxide
Sintering
Thick films
Twin boundaries
Weight
Zinc oxide
title Effect of mixing glass frits on electrical property and microstructure of sintered Cu conductive thick film
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20mixing%20glass%20frits%20on%20electrical%20property%20and%20microstructure%20of%20sintered%20Cu%20conductive%20thick%20film&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Wang,%20Jyun%20Yang&rft.date=2021-04&rft.volume=104&rft.issue=4&rft.spage=1707&rft.epage=1715&rft.pages=1707-1715&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17586&rft_dat=%3Cproquest_cross%3E2484176331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484176331&rft_id=info:pmid/&rfr_iscdi=true