Lattice dynamics of yttria: A combined investigation from spectrum measurements and first‐principle calculations

C‐type Y2O3 ceramics (relative density ~94%) were prepared at 1500 °C for 2 hours with 1% wt. ZnO as sintering aid. The cell parameters of Y2O3 from Rietveld refinements are a = 10.6113(1) Å, V = 1194.8(1) Å3. The vibrational modes / lattice dynamics of Y2O3 were investigated using vibrational spect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2021-04, Vol.104 (4), p.1797-1805
Hauptverfasser: Wang, Chun‐Hai, Shu, Wenhua, Qing, Yuchang, Luo, Fa, Zhu, Dongmei, Zhou, Wancheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1805
container_issue 4
container_start_page 1797
container_title Journal of the American Ceramic Society
container_volume 104
creator Wang, Chun‐Hai
Shu, Wenhua
Qing, Yuchang
Luo, Fa
Zhu, Dongmei
Zhou, Wancheng
description C‐type Y2O3 ceramics (relative density ~94%) were prepared at 1500 °C for 2 hours with 1% wt. ZnO as sintering aid. The cell parameters of Y2O3 from Rietveld refinements are a = 10.6113(1) Å, V = 1194.8(1) Å3. The vibrational modes / lattice dynamics of Y2O3 were investigated using vibrational spectra (Raman and infrared reflection spectra) and first‐principle (DFT) calculations. Eight of the 22 predicted first‐order Raman modes and 12 of 16 predicted IR modes are observed and reliably assigned. For the observed vibrational modes, an excellent linearity (fexp = 1.023ftheo, R2 = 0.9999) between frequency from calculations (ftheo) and that from measurements (fexp) is observed. Accordingly, the corrected frequency (fcor) of vibrational modes, phonon band structure, and density of phonon states (DOPS) of Y2O3 are presented, in which, the frequency of phonons of Y2O3 is ≤625.2 cm−1 (wavelength ≥16.0 μm) with a gap of 30.6 cm−1 from 486.0 to 516.6 cm−1 (wavelength 20.6 ‐ 19.4 μm) at room temperature. The modes with ftheo ≥292.5 cm−1 (fcor ≥299.2 cm−1) are dominated by the vibrations of O2− (light atom vibrations) and the vibrational modes with ftheo ≤239.0 cm−1 (fcor ≤244.5 cm−1) are dominated by the vibrations of both Y3+ and O2− (co‐vibrations). The three modes Tu(7) at 301.6 cm−1, Tu(10) at 333.7 cm−1, and Tu(12) at 369.7 cm−1 of Y‐O stretch vibrations dominate the phonon dielectric constant and dielectric loss of Y2O3 with more than 85% contributions.
doi_str_mv 10.1111/jace.17603
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484162580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484162580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3013-7720e22a23500c47ea445bbb15cfcb695eb51e1ba6bd1ade279e8b3b5c22db813</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8ThxHuyqqrxUiQ2sLduZIFd5FNsBZccn8I18CWnDmtlcjXTuzNUl5BLYAsa52SqDC8hSFh-RGQgBES8gPSYzxhiPspyzU3Lm_XZcociTGXEbFYI1SMuhVY01nnYVHUJwVt3SJTVdo22LJbXtB_pg31SwXUsr1zXU79AE1ze0QeV7hw22wVPVlrSyzoefr--ds62xuxqpUbXp64PZn5OTStUeL_50Tl7v1i-rh2jzfP-4Wm4iEzOIoyzjDDlXPBaMmSRDlSRCaw3CVEanhUAtAEGrVJegSuRZgbmOtTCclzqHeE6uprs71733Y3q57XrXji8lT_IEUi5yNlLXE2Vc573DSo6pG-UGCUzuO5X7TuWh0xGGCf60NQ7_kPJpuVpPnl-eJXzN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484162580</pqid></control><display><type>article</type><title>Lattice dynamics of yttria: A combined investigation from spectrum measurements and first‐principle calculations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Chun‐Hai ; Shu, Wenhua ; Qing, Yuchang ; Luo, Fa ; Zhu, Dongmei ; Zhou, Wancheng</creator><creatorcontrib>Wang, Chun‐Hai ; Shu, Wenhua ; Qing, Yuchang ; Luo, Fa ; Zhu, Dongmei ; Zhou, Wancheng</creatorcontrib><description>C‐type Y2O3 ceramics (relative density ~94%) were prepared at 1500 °C for 2 hours with 1% wt. ZnO as sintering aid. The cell parameters of Y2O3 from Rietveld refinements are a = 10.6113(1) Å, V = 1194.8(1) Å3. The vibrational modes / lattice dynamics of Y2O3 were investigated using vibrational spectra (Raman and infrared reflection spectra) and first‐principle (DFT) calculations. Eight of the 22 predicted first‐order Raman modes and 12 of 16 predicted IR modes are observed and reliably assigned. For the observed vibrational modes, an excellent linearity (fexp = 1.023ftheo, R2 = 0.9999) between frequency from calculations (ftheo) and that from measurements (fexp) is observed. Accordingly, the corrected frequency (fcor) of vibrational modes, phonon band structure, and density of phonon states (DOPS) of Y2O3 are presented, in which, the frequency of phonons of Y2O3 is ≤625.2 cm−1 (wavelength ≥16.0 μm) with a gap of 30.6 cm−1 from 486.0 to 516.6 cm−1 (wavelength 20.6 ‐ 19.4 μm) at room temperature. The modes with ftheo ≥292.5 cm−1 (fcor ≥299.2 cm−1) are dominated by the vibrations of O2− (light atom vibrations) and the vibrational modes with ftheo ≤239.0 cm−1 (fcor ≤244.5 cm−1) are dominated by the vibrations of both Y3+ and O2− (co‐vibrations). The three modes Tu(7) at 301.6 cm−1, Tu(10) at 333.7 cm−1, and Tu(12) at 369.7 cm−1 of Y‐O stretch vibrations dominate the phonon dielectric constant and dielectric loss of Y2O3 with more than 85% contributions.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17603</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Density ; Dielectric loss ; Infrared reflection ; Infrared spectra ; Lattice vibration ; Linearity ; Mathematical analysis ; Phonons ; Raman spectroscopy ; Room temperature ; Vibrational spectra ; Yttrium oxide ; yttrium/yttrium compounds ; Zinc oxide</subject><ispartof>Journal of the American Ceramic Society, 2021-04, Vol.104 (4), p.1797-1805</ispartof><rights>2020 American Ceramic Society (ACERS)</rights><rights>2021 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3013-7720e22a23500c47ea445bbb15cfcb695eb51e1ba6bd1ade279e8b3b5c22db813</citedby><cites>FETCH-LOGICAL-c3013-7720e22a23500c47ea445bbb15cfcb695eb51e1ba6bd1ade279e8b3b5c22db813</cites><orcidid>0000-0001-5527-199X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.17603$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.17603$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27904,27905,45554,45555</link.rule.ids></links><search><creatorcontrib>Wang, Chun‐Hai</creatorcontrib><creatorcontrib>Shu, Wenhua</creatorcontrib><creatorcontrib>Qing, Yuchang</creatorcontrib><creatorcontrib>Luo, Fa</creatorcontrib><creatorcontrib>Zhu, Dongmei</creatorcontrib><creatorcontrib>Zhou, Wancheng</creatorcontrib><title>Lattice dynamics of yttria: A combined investigation from spectrum measurements and first‐principle calculations</title><title>Journal of the American Ceramic Society</title><description>C‐type Y2O3 ceramics (relative density ~94%) were prepared at 1500 °C for 2 hours with 1% wt. ZnO as sintering aid. The cell parameters of Y2O3 from Rietveld refinements are a = 10.6113(1) Å, V = 1194.8(1) Å3. The vibrational modes / lattice dynamics of Y2O3 were investigated using vibrational spectra (Raman and infrared reflection spectra) and first‐principle (DFT) calculations. Eight of the 22 predicted first‐order Raman modes and 12 of 16 predicted IR modes are observed and reliably assigned. For the observed vibrational modes, an excellent linearity (fexp = 1.023ftheo, R2 = 0.9999) between frequency from calculations (ftheo) and that from measurements (fexp) is observed. Accordingly, the corrected frequency (fcor) of vibrational modes, phonon band structure, and density of phonon states (DOPS) of Y2O3 are presented, in which, the frequency of phonons of Y2O3 is ≤625.2 cm−1 (wavelength ≥16.0 μm) with a gap of 30.6 cm−1 from 486.0 to 516.6 cm−1 (wavelength 20.6 ‐ 19.4 μm) at room temperature. The modes with ftheo ≥292.5 cm−1 (fcor ≥299.2 cm−1) are dominated by the vibrations of O2− (light atom vibrations) and the vibrational modes with ftheo ≤239.0 cm−1 (fcor ≤244.5 cm−1) are dominated by the vibrations of both Y3+ and O2− (co‐vibrations). The three modes Tu(7) at 301.6 cm−1, Tu(10) at 333.7 cm−1, and Tu(12) at 369.7 cm−1 of Y‐O stretch vibrations dominate the phonon dielectric constant and dielectric loss of Y2O3 with more than 85% contributions.</description><subject>Density</subject><subject>Dielectric loss</subject><subject>Infrared reflection</subject><subject>Infrared spectra</subject><subject>Lattice vibration</subject><subject>Linearity</subject><subject>Mathematical analysis</subject><subject>Phonons</subject><subject>Raman spectroscopy</subject><subject>Room temperature</subject><subject>Vibrational spectra</subject><subject>Yttrium oxide</subject><subject>yttrium/yttrium compounds</subject><subject>Zinc oxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8ThxHuyqqrxUiQ2sLduZIFd5FNsBZccn8I18CWnDmtlcjXTuzNUl5BLYAsa52SqDC8hSFh-RGQgBES8gPSYzxhiPspyzU3Lm_XZcociTGXEbFYI1SMuhVY01nnYVHUJwVt3SJTVdo22LJbXtB_pg31SwXUsr1zXU79AE1ze0QeV7hw22wVPVlrSyzoefr--ds62xuxqpUbXp64PZn5OTStUeL_50Tl7v1i-rh2jzfP-4Wm4iEzOIoyzjDDlXPBaMmSRDlSRCaw3CVEanhUAtAEGrVJegSuRZgbmOtTCclzqHeE6uprs71733Y3q57XrXji8lT_IEUi5yNlLXE2Vc573DSo6pG-UGCUzuO5X7TuWh0xGGCf60NQ7_kPJpuVpPnl-eJXzN</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Wang, Chun‐Hai</creator><creator>Shu, Wenhua</creator><creator>Qing, Yuchang</creator><creator>Luo, Fa</creator><creator>Zhu, Dongmei</creator><creator>Zhou, Wancheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5527-199X</orcidid></search><sort><creationdate>202104</creationdate><title>Lattice dynamics of yttria: A combined investigation from spectrum measurements and first‐principle calculations</title><author>Wang, Chun‐Hai ; Shu, Wenhua ; Qing, Yuchang ; Luo, Fa ; Zhu, Dongmei ; Zhou, Wancheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3013-7720e22a23500c47ea445bbb15cfcb695eb51e1ba6bd1ade279e8b3b5c22db813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Density</topic><topic>Dielectric loss</topic><topic>Infrared reflection</topic><topic>Infrared spectra</topic><topic>Lattice vibration</topic><topic>Linearity</topic><topic>Mathematical analysis</topic><topic>Phonons</topic><topic>Raman spectroscopy</topic><topic>Room temperature</topic><topic>Vibrational spectra</topic><topic>Yttrium oxide</topic><topic>yttrium/yttrium compounds</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chun‐Hai</creatorcontrib><creatorcontrib>Shu, Wenhua</creatorcontrib><creatorcontrib>Qing, Yuchang</creatorcontrib><creatorcontrib>Luo, Fa</creatorcontrib><creatorcontrib>Zhu, Dongmei</creatorcontrib><creatorcontrib>Zhou, Wancheng</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chun‐Hai</au><au>Shu, Wenhua</au><au>Qing, Yuchang</au><au>Luo, Fa</au><au>Zhu, Dongmei</au><au>Zhou, Wancheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice dynamics of yttria: A combined investigation from spectrum measurements and first‐principle calculations</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2021-04</date><risdate>2021</risdate><volume>104</volume><issue>4</issue><spage>1797</spage><epage>1805</epage><pages>1797-1805</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>C‐type Y2O3 ceramics (relative density ~94%) were prepared at 1500 °C for 2 hours with 1% wt. ZnO as sintering aid. The cell parameters of Y2O3 from Rietveld refinements are a = 10.6113(1) Å, V = 1194.8(1) Å3. The vibrational modes / lattice dynamics of Y2O3 were investigated using vibrational spectra (Raman and infrared reflection spectra) and first‐principle (DFT) calculations. Eight of the 22 predicted first‐order Raman modes and 12 of 16 predicted IR modes are observed and reliably assigned. For the observed vibrational modes, an excellent linearity (fexp = 1.023ftheo, R2 = 0.9999) between frequency from calculations (ftheo) and that from measurements (fexp) is observed. Accordingly, the corrected frequency (fcor) of vibrational modes, phonon band structure, and density of phonon states (DOPS) of Y2O3 are presented, in which, the frequency of phonons of Y2O3 is ≤625.2 cm−1 (wavelength ≥16.0 μm) with a gap of 30.6 cm−1 from 486.0 to 516.6 cm−1 (wavelength 20.6 ‐ 19.4 μm) at room temperature. The modes with ftheo ≥292.5 cm−1 (fcor ≥299.2 cm−1) are dominated by the vibrations of O2− (light atom vibrations) and the vibrational modes with ftheo ≤239.0 cm−1 (fcor ≤244.5 cm−1) are dominated by the vibrations of both Y3+ and O2− (co‐vibrations). The three modes Tu(7) at 301.6 cm−1, Tu(10) at 333.7 cm−1, and Tu(12) at 369.7 cm−1 of Y‐O stretch vibrations dominate the phonon dielectric constant and dielectric loss of Y2O3 with more than 85% contributions.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17603</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5527-199X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2021-04, Vol.104 (4), p.1797-1805
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2484162580
source Wiley Online Library Journals Frontfile Complete
subjects Density
Dielectric loss
Infrared reflection
Infrared spectra
Lattice vibration
Linearity
Mathematical analysis
Phonons
Raman spectroscopy
Room temperature
Vibrational spectra
Yttrium oxide
yttrium/yttrium compounds
Zinc oxide
title Lattice dynamics of yttria: A combined investigation from spectrum measurements and first‐principle calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20dynamics%20of%20yttria:%20A%20combined%20investigation%20from%20spectrum%20measurements%20and%20first%E2%80%90principle%20calculations&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Wang,%20Chun%E2%80%90Hai&rft.date=2021-04&rft.volume=104&rft.issue=4&rft.spage=1797&rft.epage=1805&rft.pages=1797-1805&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17603&rft_dat=%3Cproquest_cross%3E2484162580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484162580&rft_id=info:pmid/&rfr_iscdi=true