Trace elements adsorption by natural and chemically modified humic acids
Humic substances with or without chemical modification can serve as environmentally benign and inexpensive adsorbents of potentially toxic trace elements (PTTEs) in the environment. The present study investigated the absorption of Pb, Zn, Cu and Ni by natural and potassium persulfate (K 2 S 2 O 8 )...
Gespeichert in:
Veröffentlicht in: | Environmental geochemistry and health 2021, Vol.43 (1), p.127-138 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | 1 |
container_start_page | 127 |
container_title | Environmental geochemistry and health |
container_volume | 43 |
creator | Perelomov, Leonid Sarkar, Binoy Pinsky, David Atroshchenko, Yury Perelomova, Irina Mukhtorov, Loik Mazur, Anton |
description | Humic substances with or without chemical modification can serve as environmentally benign and inexpensive adsorbents of potentially toxic trace elements (PTTEs) in the environment. The present study investigated the absorption of Pb, Zn, Cu and Ni by natural and potassium persulfate (K
2
S
2
O
8
) modified humic acids (HAs) isolated from a lowland peat through batch experiments. The adsorption of the studied PTTEs on the natural HA was satisfactorily described by the Langmuir isotherm model with maximum monolayer adsorption capacities of 318.2, 286.5, 225.0 and 136.8 mmol/kg for Pb, Cu, Zn and Ni, respectively. A thorough characterization of the natural and modified HA using
13
C nuclear magnetic resonance spectroscopy demonstrated that the chemical modification of natural HA with K
2
S
2
O
8
led to an increase in the content of carboxyl groups, and ketone and quinoid fragments in the HA structure. Consequently, the modified HA absorbed 16.3, 14.2, 10.6 and 6.9% more Pb, Ni, Zn and Cu, respectively, than the original natural HA. The isotherm data modeling together with adsorbent characterization suggested that the adsorption of PTTEs was controlled mainly by chemisorption mechanisms where inner-sphere complexations of metal ions with HA functional groups took place. |
doi_str_mv | 10.1007/s10653-020-00686-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484149709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484149709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-c21d87b3a153b9a69a9e5835cbc7716d22e57c973f2203967b3ba139d5c3fd583</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyyQJdaG8SNxvEQVUKRKbMracmyHpsqj2Mmif48hBXasRpo59450ELqmcEcB5H2kkGecAAMCkBc5gRM0p5nkhKmCn6I5sFwRAYLN0EWMOwBQUhTnaMaZzKmgbI5Wm2Csx77xre-GiI2LfdgPdd_h8oA7M4zBNNh0Dtutb2trmuaA297VVe0d3o5phY2tXbxEZ5Vpor86zgV6e3rcLFdk_fr8snxYEyuoGohl1BWy5IZmvFQmV0b5rOCZLa2UNHeM-UxaJXnFGHCVJ7Q0lCuXWV65RC7Q7dS7D_3H6OOgd_0YuvRSM1EIKpQElSg2UTb0MQZf6X2oWxMOmoL-kqcneTrJ09_yNKTQzbF6LFvvfiM_thLAJyCmU_fuw9_vf2o_AX_heSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484149709</pqid></control><display><type>article</type><title>Trace elements adsorption by natural and chemically modified humic acids</title><source>MEDLINE</source><source>SpringerNature Complete Journals</source><creator>Perelomov, Leonid ; Sarkar, Binoy ; Pinsky, David ; Atroshchenko, Yury ; Perelomova, Irina ; Mukhtorov, Loik ; Mazur, Anton</creator><creatorcontrib>Perelomov, Leonid ; Sarkar, Binoy ; Pinsky, David ; Atroshchenko, Yury ; Perelomova, Irina ; Mukhtorov, Loik ; Mazur, Anton</creatorcontrib><description>Humic substances with or without chemical modification can serve as environmentally benign and inexpensive adsorbents of potentially toxic trace elements (PTTEs) in the environment. The present study investigated the absorption of Pb, Zn, Cu and Ni by natural and potassium persulfate (K
2
S
2
O
8
) modified humic acids (HAs) isolated from a lowland peat through batch experiments. The adsorption of the studied PTTEs on the natural HA was satisfactorily described by the Langmuir isotherm model with maximum monolayer adsorption capacities of 318.2, 286.5, 225.0 and 136.8 mmol/kg for Pb, Cu, Zn and Ni, respectively. A thorough characterization of the natural and modified HA using
13
C nuclear magnetic resonance spectroscopy demonstrated that the chemical modification of natural HA with K
2
S
2
O
8
led to an increase in the content of carboxyl groups, and ketone and quinoid fragments in the HA structure. Consequently, the modified HA absorbed 16.3, 14.2, 10.6 and 6.9% more Pb, Ni, Zn and Cu, respectively, than the original natural HA. The isotherm data modeling together with adsorbent characterization suggested that the adsorption of PTTEs was controlled mainly by chemisorption mechanisms where inner-sphere complexations of metal ions with HA functional groups took place.</description><identifier>ISSN: 0269-4042</identifier><identifier>EISSN: 1573-2983</identifier><identifier>DOI: 10.1007/s10653-020-00686-0</identifier><identifier>PMID: 32761412</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adsorbents ; Adsorption ; Analytical methods ; Chemical modification ; Chemisorption ; Copper ; Earth and Environmental Science ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental Pollutants - chemistry ; Environmental Restoration and Remediation - methods ; Functional groups ; Geochemistry ; Heavy metals ; Humic acids ; Humic substances ; Humic Substances - analysis ; Isotherms ; Ketones ; Lead ; Magnetic resonance spectroscopy ; Metal ions ; Models, Theoretical ; Nickel ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Original Paper ; Peat ; Potassium ; Potassium Compounds - chemistry ; Potassium persulfate ; Public Health ; Soil - chemistry ; Soil Science & Conservation ; Sulfates - chemistry ; Terrestrial Pollution ; Trace elements ; Trace Elements - chemistry ; Zinc</subject><ispartof>Environmental geochemistry and health, 2021, Vol.43 (1), p.127-138</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-c21d87b3a153b9a69a9e5835cbc7716d22e57c973f2203967b3ba139d5c3fd583</citedby><cites>FETCH-LOGICAL-c419t-c21d87b3a153b9a69a9e5835cbc7716d22e57c973f2203967b3ba139d5c3fd583</cites><orcidid>0000-0003-0507-4968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10653-020-00686-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10653-020-00686-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32761412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perelomov, Leonid</creatorcontrib><creatorcontrib>Sarkar, Binoy</creatorcontrib><creatorcontrib>Pinsky, David</creatorcontrib><creatorcontrib>Atroshchenko, Yury</creatorcontrib><creatorcontrib>Perelomova, Irina</creatorcontrib><creatorcontrib>Mukhtorov, Loik</creatorcontrib><creatorcontrib>Mazur, Anton</creatorcontrib><title>Trace elements adsorption by natural and chemically modified humic acids</title><title>Environmental geochemistry and health</title><addtitle>Environ Geochem Health</addtitle><addtitle>Environ Geochem Health</addtitle><description>Humic substances with or without chemical modification can serve as environmentally benign and inexpensive adsorbents of potentially toxic trace elements (PTTEs) in the environment. The present study investigated the absorption of Pb, Zn, Cu and Ni by natural and potassium persulfate (K
2
S
2
O
8
) modified humic acids (HAs) isolated from a lowland peat through batch experiments. The adsorption of the studied PTTEs on the natural HA was satisfactorily described by the Langmuir isotherm model with maximum monolayer adsorption capacities of 318.2, 286.5, 225.0 and 136.8 mmol/kg for Pb, Cu, Zn and Ni, respectively. A thorough characterization of the natural and modified HA using
13
C nuclear magnetic resonance spectroscopy demonstrated that the chemical modification of natural HA with K
2
S
2
O
8
led to an increase in the content of carboxyl groups, and ketone and quinoid fragments in the HA structure. Consequently, the modified HA absorbed 16.3, 14.2, 10.6 and 6.9% more Pb, Ni, Zn and Cu, respectively, than the original natural HA. The isotherm data modeling together with adsorbent characterization suggested that the adsorption of PTTEs was controlled mainly by chemisorption mechanisms where inner-sphere complexations of metal ions with HA functional groups took place.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Analytical methods</subject><subject>Chemical modification</subject><subject>Chemisorption</subject><subject>Copper</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental Pollutants - chemistry</subject><subject>Environmental Restoration and Remediation - methods</subject><subject>Functional groups</subject><subject>Geochemistry</subject><subject>Heavy metals</subject><subject>Humic acids</subject><subject>Humic substances</subject><subject>Humic Substances - analysis</subject><subject>Isotherms</subject><subject>Ketones</subject><subject>Lead</subject><subject>Magnetic resonance spectroscopy</subject><subject>Metal ions</subject><subject>Models, Theoretical</subject><subject>Nickel</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Original Paper</subject><subject>Peat</subject><subject>Potassium</subject><subject>Potassium Compounds - chemistry</subject><subject>Potassium persulfate</subject><subject>Public Health</subject><subject>Soil - chemistry</subject><subject>Soil Science & Conservation</subject><subject>Sulfates - chemistry</subject><subject>Terrestrial Pollution</subject><subject>Trace elements</subject><subject>Trace Elements - chemistry</subject><subject>Zinc</subject><issn>0269-4042</issn><issn>1573-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyyQJdaG8SNxvEQVUKRKbMracmyHpsqj2Mmif48hBXasRpo59450ELqmcEcB5H2kkGecAAMCkBc5gRM0p5nkhKmCn6I5sFwRAYLN0EWMOwBQUhTnaMaZzKmgbI5Wm2Csx77xre-GiI2LfdgPdd_h8oA7M4zBNNh0Dtutb2trmuaA297VVe0d3o5phY2tXbxEZ5Vpor86zgV6e3rcLFdk_fr8snxYEyuoGohl1BWy5IZmvFQmV0b5rOCZLa2UNHeM-UxaJXnFGHCVJ7Q0lCuXWV65RC7Q7dS7D_3H6OOgd_0YuvRSM1EIKpQElSg2UTb0MQZf6X2oWxMOmoL-kqcneTrJ09_yNKTQzbF6LFvvfiM_thLAJyCmU_fuw9_vf2o_AX_heSw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Perelomov, Leonid</creator><creator>Sarkar, Binoy</creator><creator>Pinsky, David</creator><creator>Atroshchenko, Yury</creator><creator>Perelomova, Irina</creator><creator>Mukhtorov, Loik</creator><creator>Mazur, Anton</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0507-4968</orcidid></search><sort><creationdate>2021</creationdate><title>Trace elements adsorption by natural and chemically modified humic acids</title><author>Perelomov, Leonid ; Sarkar, Binoy ; Pinsky, David ; Atroshchenko, Yury ; Perelomova, Irina ; Mukhtorov, Loik ; Mazur, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-c21d87b3a153b9a69a9e5835cbc7716d22e57c973f2203967b3ba139d5c3fd583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Analytical methods</topic><topic>Chemical modification</topic><topic>Chemisorption</topic><topic>Copper</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental Pollutants - chemistry</topic><topic>Environmental Restoration and Remediation - methods</topic><topic>Functional groups</topic><topic>Geochemistry</topic><topic>Heavy metals</topic><topic>Humic acids</topic><topic>Humic substances</topic><topic>Humic Substances - analysis</topic><topic>Isotherms</topic><topic>Ketones</topic><topic>Lead</topic><topic>Magnetic resonance spectroscopy</topic><topic>Metal ions</topic><topic>Models, Theoretical</topic><topic>Nickel</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Original Paper</topic><topic>Peat</topic><topic>Potassium</topic><topic>Potassium Compounds - chemistry</topic><topic>Potassium persulfate</topic><topic>Public Health</topic><topic>Soil - chemistry</topic><topic>Soil Science & Conservation</topic><topic>Sulfates - chemistry</topic><topic>Terrestrial Pollution</topic><topic>Trace elements</topic><topic>Trace Elements - chemistry</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perelomov, Leonid</creatorcontrib><creatorcontrib>Sarkar, Binoy</creatorcontrib><creatorcontrib>Pinsky, David</creatorcontrib><creatorcontrib>Atroshchenko, Yury</creatorcontrib><creatorcontrib>Perelomova, Irina</creatorcontrib><creatorcontrib>Mukhtorov, Loik</creatorcontrib><creatorcontrib>Mazur, Anton</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental geochemistry and health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perelomov, Leonid</au><au>Sarkar, Binoy</au><au>Pinsky, David</au><au>Atroshchenko, Yury</au><au>Perelomova, Irina</au><au>Mukhtorov, Loik</au><au>Mazur, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trace elements adsorption by natural and chemically modified humic acids</atitle><jtitle>Environmental geochemistry and health</jtitle><stitle>Environ Geochem Health</stitle><addtitle>Environ Geochem Health</addtitle><date>2021</date><risdate>2021</risdate><volume>43</volume><issue>1</issue><spage>127</spage><epage>138</epage><pages>127-138</pages><issn>0269-4042</issn><eissn>1573-2983</eissn><abstract>Humic substances with or without chemical modification can serve as environmentally benign and inexpensive adsorbents of potentially toxic trace elements (PTTEs) in the environment. The present study investigated the absorption of Pb, Zn, Cu and Ni by natural and potassium persulfate (K
2
S
2
O
8
) modified humic acids (HAs) isolated from a lowland peat through batch experiments. The adsorption of the studied PTTEs on the natural HA was satisfactorily described by the Langmuir isotherm model with maximum monolayer adsorption capacities of 318.2, 286.5, 225.0 and 136.8 mmol/kg for Pb, Cu, Zn and Ni, respectively. A thorough characterization of the natural and modified HA using
13
C nuclear magnetic resonance spectroscopy demonstrated that the chemical modification of natural HA with K
2
S
2
O
8
led to an increase in the content of carboxyl groups, and ketone and quinoid fragments in the HA structure. Consequently, the modified HA absorbed 16.3, 14.2, 10.6 and 6.9% more Pb, Ni, Zn and Cu, respectively, than the original natural HA. The isotherm data modeling together with adsorbent characterization suggested that the adsorption of PTTEs was controlled mainly by chemisorption mechanisms where inner-sphere complexations of metal ions with HA functional groups took place.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>32761412</pmid><doi>10.1007/s10653-020-00686-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0507-4968</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-4042 |
ispartof | Environmental geochemistry and health, 2021, Vol.43 (1), p.127-138 |
issn | 0269-4042 1573-2983 |
language | eng |
recordid | cdi_proquest_journals_2484149709 |
source | MEDLINE; SpringerNature Complete Journals |
subjects | Adsorbents Adsorption Analytical methods Chemical modification Chemisorption Copper Earth and Environmental Science Environment Environmental Chemistry Environmental Health Environmental Pollutants - chemistry Environmental Restoration and Remediation - methods Functional groups Geochemistry Heavy metals Humic acids Humic substances Humic Substances - analysis Isotherms Ketones Lead Magnetic resonance spectroscopy Metal ions Models, Theoretical Nickel NMR NMR spectroscopy Nuclear magnetic resonance Original Paper Peat Potassium Potassium Compounds - chemistry Potassium persulfate Public Health Soil - chemistry Soil Science & Conservation Sulfates - chemistry Terrestrial Pollution Trace elements Trace Elements - chemistry Zinc |
title | Trace elements adsorption by natural and chemically modified humic acids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trace%20elements%20adsorption%20by%20natural%20and%20chemically%20modified%20humic%20acids&rft.jtitle=Environmental%20geochemistry%20and%20health&rft.au=Perelomov,%20Leonid&rft.date=2021&rft.volume=43&rft.issue=1&rft.spage=127&rft.epage=138&rft.pages=127-138&rft.issn=0269-4042&rft.eissn=1573-2983&rft_id=info:doi/10.1007/s10653-020-00686-0&rft_dat=%3Cproquest_cross%3E2484149709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484149709&rft_id=info:pmid/32761412&rfr_iscdi=true |