Trace elements adsorption by natural and chemically modified humic acids

Humic substances with or without chemical modification can serve as environmentally benign and inexpensive adsorbents of potentially toxic trace elements (PTTEs) in the environment. The present study investigated the absorption of Pb, Zn, Cu and Ni by natural and potassium persulfate (K 2 S 2 O 8 )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental geochemistry and health 2021, Vol.43 (1), p.127-138
Hauptverfasser: Perelomov, Leonid, Sarkar, Binoy, Pinsky, David, Atroshchenko, Yury, Perelomova, Irina, Mukhtorov, Loik, Mazur, Anton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue 1
container_start_page 127
container_title Environmental geochemistry and health
container_volume 43
creator Perelomov, Leonid
Sarkar, Binoy
Pinsky, David
Atroshchenko, Yury
Perelomova, Irina
Mukhtorov, Loik
Mazur, Anton
description Humic substances with or without chemical modification can serve as environmentally benign and inexpensive adsorbents of potentially toxic trace elements (PTTEs) in the environment. The present study investigated the absorption of Pb, Zn, Cu and Ni by natural and potassium persulfate (K 2 S 2 O 8 ) modified humic acids (HAs) isolated from a lowland peat through batch experiments. The adsorption of the studied PTTEs on the natural HA was satisfactorily described by the Langmuir isotherm model with maximum monolayer adsorption capacities of 318.2, 286.5, 225.0 and 136.8 mmol/kg for Pb, Cu, Zn and Ni, respectively. A thorough characterization of the natural and modified HA using 13 C nuclear magnetic resonance spectroscopy demonstrated that the chemical modification of natural HA with K 2 S 2 O 8 led to an increase in the content of carboxyl groups, and ketone and quinoid fragments in the HA structure. Consequently, the modified HA absorbed 16.3, 14.2, 10.6 and 6.9% more Pb, Ni, Zn and Cu, respectively, than the original natural HA. The isotherm data modeling together with adsorbent characterization suggested that the adsorption of PTTEs was controlled mainly by chemisorption mechanisms where inner-sphere complexations of metal ions with HA functional groups took place.
doi_str_mv 10.1007/s10653-020-00686-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2484149709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484149709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-c21d87b3a153b9a69a9e5835cbc7716d22e57c973f2203967b3ba139d5c3fd583</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyyQJdaG8SNxvEQVUKRKbMracmyHpsqj2Mmif48hBXasRpo59450ELqmcEcB5H2kkGecAAMCkBc5gRM0p5nkhKmCn6I5sFwRAYLN0EWMOwBQUhTnaMaZzKmgbI5Wm2Csx77xre-GiI2LfdgPdd_h8oA7M4zBNNh0Dtutb2trmuaA297VVe0d3o5phY2tXbxEZ5Vpor86zgV6e3rcLFdk_fr8snxYEyuoGohl1BWy5IZmvFQmV0b5rOCZLa2UNHeM-UxaJXnFGHCVJ7Q0lCuXWV65RC7Q7dS7D_3H6OOgd_0YuvRSM1EIKpQElSg2UTb0MQZf6X2oWxMOmoL-kqcneTrJ09_yNKTQzbF6LFvvfiM_thLAJyCmU_fuw9_vf2o_AX_heSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484149709</pqid></control><display><type>article</type><title>Trace elements adsorption by natural and chemically modified humic acids</title><source>MEDLINE</source><source>SpringerNature Complete Journals</source><creator>Perelomov, Leonid ; Sarkar, Binoy ; Pinsky, David ; Atroshchenko, Yury ; Perelomova, Irina ; Mukhtorov, Loik ; Mazur, Anton</creator><creatorcontrib>Perelomov, Leonid ; Sarkar, Binoy ; Pinsky, David ; Atroshchenko, Yury ; Perelomova, Irina ; Mukhtorov, Loik ; Mazur, Anton</creatorcontrib><description>Humic substances with or without chemical modification can serve as environmentally benign and inexpensive adsorbents of potentially toxic trace elements (PTTEs) in the environment. The present study investigated the absorption of Pb, Zn, Cu and Ni by natural and potassium persulfate (K 2 S 2 O 8 ) modified humic acids (HAs) isolated from a lowland peat through batch experiments. The adsorption of the studied PTTEs on the natural HA was satisfactorily described by the Langmuir isotherm model with maximum monolayer adsorption capacities of 318.2, 286.5, 225.0 and 136.8 mmol/kg for Pb, Cu, Zn and Ni, respectively. A thorough characterization of the natural and modified HA using 13 C nuclear magnetic resonance spectroscopy demonstrated that the chemical modification of natural HA with K 2 S 2 O 8 led to an increase in the content of carboxyl groups, and ketone and quinoid fragments in the HA structure. Consequently, the modified HA absorbed 16.3, 14.2, 10.6 and 6.9% more Pb, Ni, Zn and Cu, respectively, than the original natural HA. The isotherm data modeling together with adsorbent characterization suggested that the adsorption of PTTEs was controlled mainly by chemisorption mechanisms where inner-sphere complexations of metal ions with HA functional groups took place.</description><identifier>ISSN: 0269-4042</identifier><identifier>EISSN: 1573-2983</identifier><identifier>DOI: 10.1007/s10653-020-00686-0</identifier><identifier>PMID: 32761412</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adsorbents ; Adsorption ; Analytical methods ; Chemical modification ; Chemisorption ; Copper ; Earth and Environmental Science ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental Pollutants - chemistry ; Environmental Restoration and Remediation - methods ; Functional groups ; Geochemistry ; Heavy metals ; Humic acids ; Humic substances ; Humic Substances - analysis ; Isotherms ; Ketones ; Lead ; Magnetic resonance spectroscopy ; Metal ions ; Models, Theoretical ; Nickel ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Original Paper ; Peat ; Potassium ; Potassium Compounds - chemistry ; Potassium persulfate ; Public Health ; Soil - chemistry ; Soil Science &amp; Conservation ; Sulfates - chemistry ; Terrestrial Pollution ; Trace elements ; Trace Elements - chemistry ; Zinc</subject><ispartof>Environmental geochemistry and health, 2021, Vol.43 (1), p.127-138</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-c21d87b3a153b9a69a9e5835cbc7716d22e57c973f2203967b3ba139d5c3fd583</citedby><cites>FETCH-LOGICAL-c419t-c21d87b3a153b9a69a9e5835cbc7716d22e57c973f2203967b3ba139d5c3fd583</cites><orcidid>0000-0003-0507-4968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10653-020-00686-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10653-020-00686-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32761412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perelomov, Leonid</creatorcontrib><creatorcontrib>Sarkar, Binoy</creatorcontrib><creatorcontrib>Pinsky, David</creatorcontrib><creatorcontrib>Atroshchenko, Yury</creatorcontrib><creatorcontrib>Perelomova, Irina</creatorcontrib><creatorcontrib>Mukhtorov, Loik</creatorcontrib><creatorcontrib>Mazur, Anton</creatorcontrib><title>Trace elements adsorption by natural and chemically modified humic acids</title><title>Environmental geochemistry and health</title><addtitle>Environ Geochem Health</addtitle><addtitle>Environ Geochem Health</addtitle><description>Humic substances with or without chemical modification can serve as environmentally benign and inexpensive adsorbents of potentially toxic trace elements (PTTEs) in the environment. The present study investigated the absorption of Pb, Zn, Cu and Ni by natural and potassium persulfate (K 2 S 2 O 8 ) modified humic acids (HAs) isolated from a lowland peat through batch experiments. The adsorption of the studied PTTEs on the natural HA was satisfactorily described by the Langmuir isotherm model with maximum monolayer adsorption capacities of 318.2, 286.5, 225.0 and 136.8 mmol/kg for Pb, Cu, Zn and Ni, respectively. A thorough characterization of the natural and modified HA using 13 C nuclear magnetic resonance spectroscopy demonstrated that the chemical modification of natural HA with K 2 S 2 O 8 led to an increase in the content of carboxyl groups, and ketone and quinoid fragments in the HA structure. Consequently, the modified HA absorbed 16.3, 14.2, 10.6 and 6.9% more Pb, Ni, Zn and Cu, respectively, than the original natural HA. The isotherm data modeling together with adsorbent characterization suggested that the adsorption of PTTEs was controlled mainly by chemisorption mechanisms where inner-sphere complexations of metal ions with HA functional groups took place.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Analytical methods</subject><subject>Chemical modification</subject><subject>Chemisorption</subject><subject>Copper</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental Pollutants - chemistry</subject><subject>Environmental Restoration and Remediation - methods</subject><subject>Functional groups</subject><subject>Geochemistry</subject><subject>Heavy metals</subject><subject>Humic acids</subject><subject>Humic substances</subject><subject>Humic Substances - analysis</subject><subject>Isotherms</subject><subject>Ketones</subject><subject>Lead</subject><subject>Magnetic resonance spectroscopy</subject><subject>Metal ions</subject><subject>Models, Theoretical</subject><subject>Nickel</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Original Paper</subject><subject>Peat</subject><subject>Potassium</subject><subject>Potassium Compounds - chemistry</subject><subject>Potassium persulfate</subject><subject>Public Health</subject><subject>Soil - chemistry</subject><subject>Soil Science &amp; Conservation</subject><subject>Sulfates - chemistry</subject><subject>Terrestrial Pollution</subject><subject>Trace elements</subject><subject>Trace Elements - chemistry</subject><subject>Zinc</subject><issn>0269-4042</issn><issn>1573-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyyQJdaG8SNxvEQVUKRKbMracmyHpsqj2Mmif48hBXasRpo59450ELqmcEcB5H2kkGecAAMCkBc5gRM0p5nkhKmCn6I5sFwRAYLN0EWMOwBQUhTnaMaZzKmgbI5Wm2Csx77xre-GiI2LfdgPdd_h8oA7M4zBNNh0Dtutb2trmuaA297VVe0d3o5phY2tXbxEZ5Vpor86zgV6e3rcLFdk_fr8snxYEyuoGohl1BWy5IZmvFQmV0b5rOCZLa2UNHeM-UxaJXnFGHCVJ7Q0lCuXWV65RC7Q7dS7D_3H6OOgd_0YuvRSM1EIKpQElSg2UTb0MQZf6X2oWxMOmoL-kqcneTrJ09_yNKTQzbF6LFvvfiM_thLAJyCmU_fuw9_vf2o_AX_heSw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Perelomov, Leonid</creator><creator>Sarkar, Binoy</creator><creator>Pinsky, David</creator><creator>Atroshchenko, Yury</creator><creator>Perelomova, Irina</creator><creator>Mukhtorov, Loik</creator><creator>Mazur, Anton</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0507-4968</orcidid></search><sort><creationdate>2021</creationdate><title>Trace elements adsorption by natural and chemically modified humic acids</title><author>Perelomov, Leonid ; Sarkar, Binoy ; Pinsky, David ; Atroshchenko, Yury ; Perelomova, Irina ; Mukhtorov, Loik ; Mazur, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-c21d87b3a153b9a69a9e5835cbc7716d22e57c973f2203967b3ba139d5c3fd583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Analytical methods</topic><topic>Chemical modification</topic><topic>Chemisorption</topic><topic>Copper</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental Pollutants - chemistry</topic><topic>Environmental Restoration and Remediation - methods</topic><topic>Functional groups</topic><topic>Geochemistry</topic><topic>Heavy metals</topic><topic>Humic acids</topic><topic>Humic substances</topic><topic>Humic Substances - analysis</topic><topic>Isotherms</topic><topic>Ketones</topic><topic>Lead</topic><topic>Magnetic resonance spectroscopy</topic><topic>Metal ions</topic><topic>Models, Theoretical</topic><topic>Nickel</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Original Paper</topic><topic>Peat</topic><topic>Potassium</topic><topic>Potassium Compounds - chemistry</topic><topic>Potassium persulfate</topic><topic>Public Health</topic><topic>Soil - chemistry</topic><topic>Soil Science &amp; Conservation</topic><topic>Sulfates - chemistry</topic><topic>Terrestrial Pollution</topic><topic>Trace elements</topic><topic>Trace Elements - chemistry</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perelomov, Leonid</creatorcontrib><creatorcontrib>Sarkar, Binoy</creatorcontrib><creatorcontrib>Pinsky, David</creatorcontrib><creatorcontrib>Atroshchenko, Yury</creatorcontrib><creatorcontrib>Perelomova, Irina</creatorcontrib><creatorcontrib>Mukhtorov, Loik</creatorcontrib><creatorcontrib>Mazur, Anton</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental geochemistry and health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perelomov, Leonid</au><au>Sarkar, Binoy</au><au>Pinsky, David</au><au>Atroshchenko, Yury</au><au>Perelomova, Irina</au><au>Mukhtorov, Loik</au><au>Mazur, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trace elements adsorption by natural and chemically modified humic acids</atitle><jtitle>Environmental geochemistry and health</jtitle><stitle>Environ Geochem Health</stitle><addtitle>Environ Geochem Health</addtitle><date>2021</date><risdate>2021</risdate><volume>43</volume><issue>1</issue><spage>127</spage><epage>138</epage><pages>127-138</pages><issn>0269-4042</issn><eissn>1573-2983</eissn><abstract>Humic substances with or without chemical modification can serve as environmentally benign and inexpensive adsorbents of potentially toxic trace elements (PTTEs) in the environment. The present study investigated the absorption of Pb, Zn, Cu and Ni by natural and potassium persulfate (K 2 S 2 O 8 ) modified humic acids (HAs) isolated from a lowland peat through batch experiments. The adsorption of the studied PTTEs on the natural HA was satisfactorily described by the Langmuir isotherm model with maximum monolayer adsorption capacities of 318.2, 286.5, 225.0 and 136.8 mmol/kg for Pb, Cu, Zn and Ni, respectively. A thorough characterization of the natural and modified HA using 13 C nuclear magnetic resonance spectroscopy demonstrated that the chemical modification of natural HA with K 2 S 2 O 8 led to an increase in the content of carboxyl groups, and ketone and quinoid fragments in the HA structure. Consequently, the modified HA absorbed 16.3, 14.2, 10.6 and 6.9% more Pb, Ni, Zn and Cu, respectively, than the original natural HA. The isotherm data modeling together with adsorbent characterization suggested that the adsorption of PTTEs was controlled mainly by chemisorption mechanisms where inner-sphere complexations of metal ions with HA functional groups took place.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>32761412</pmid><doi>10.1007/s10653-020-00686-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0507-4968</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0269-4042
ispartof Environmental geochemistry and health, 2021, Vol.43 (1), p.127-138
issn 0269-4042
1573-2983
language eng
recordid cdi_proquest_journals_2484149709
source MEDLINE; SpringerNature Complete Journals
subjects Adsorbents
Adsorption
Analytical methods
Chemical modification
Chemisorption
Copper
Earth and Environmental Science
Environment
Environmental Chemistry
Environmental Health
Environmental Pollutants - chemistry
Environmental Restoration and Remediation - methods
Functional groups
Geochemistry
Heavy metals
Humic acids
Humic substances
Humic Substances - analysis
Isotherms
Ketones
Lead
Magnetic resonance spectroscopy
Metal ions
Models, Theoretical
Nickel
NMR
NMR spectroscopy
Nuclear magnetic resonance
Original Paper
Peat
Potassium
Potassium Compounds - chemistry
Potassium persulfate
Public Health
Soil - chemistry
Soil Science & Conservation
Sulfates - chemistry
Terrestrial Pollution
Trace elements
Trace Elements - chemistry
Zinc
title Trace elements adsorption by natural and chemically modified humic acids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trace%20elements%20adsorption%20by%20natural%20and%20chemically%20modified%20humic%20acids&rft.jtitle=Environmental%20geochemistry%20and%20health&rft.au=Perelomov,%20Leonid&rft.date=2021&rft.volume=43&rft.issue=1&rft.spage=127&rft.epage=138&rft.pages=127-138&rft.issn=0269-4042&rft.eissn=1573-2983&rft_id=info:doi/10.1007/s10653-020-00686-0&rft_dat=%3Cproquest_cross%3E2484149709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484149709&rft_id=info:pmid/32761412&rfr_iscdi=true