Laser Gain for Inhomogeneous Boundary Conditions

The method proposed by the authors for solving the Helmholtz equation with homogeneous boundary conditions was verified for an elliptic cross section. The method is generalized to the Helmholtz equation with inhomogeneous boundary conditions. The generalization has been verified for circular and ell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian physics journal 2021, Vol.63 (9), p.1631-1638
Hauptverfasser: Kozhevnikov, V. A., Privalov, V. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1638
container_issue 9
container_start_page 1631
container_title Russian physics journal
container_volume 63
creator Kozhevnikov, V. A.
Privalov, V. E.
description The method proposed by the authors for solving the Helmholtz equation with homogeneous boundary conditions was verified for an elliptic cross section. The method is generalized to the Helmholtz equation with inhomogeneous boundary conditions. The generalization has been verified for circular and elliptical cross sections.
doi_str_mv 10.1007/s11182-021-02215-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2483640113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651512038</galeid><sourcerecordid>A651512038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-9435128f4de317fcf82cbcab696a404cfb0175f0b536f65d7e80dd577722dd533</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC59WZZPOnx1q0Fgpe9BzSbFK3tElNdg9-e1NX8CYhTBjeb_LmEXKLcI8A8iEjoqI1UCyXIq_lGZkgl6yeUarOyxtEUyul5CW5ynkHUDAhJwTWJrtULU0XKh9TtQof8RC3Lrg45OoxDqE16ataxNB2fRdDviYX3uyzu_mtU_L-_PS2eKnXr8vVYr6uLeOqr2cN40iVb1rHUHrrFbUbazZiJkwDjfUbQMk9bDgTXvBWOgVty6WUlJbK2JTcjXOPKX4OLvd6F4cUypeaNoqJBhBPqvtRtTV7p7vgY5-MLad1h87G4HxX-nPBsbgBpgpAR8CmmHNyXh9TdygragR9ilKPUeoSpf6JUssCsRHKRRy2Lv15-Yf6BkANdJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483640113</pqid></control><display><type>article</type><title>Laser Gain for Inhomogeneous Boundary Conditions</title><source>SpringerNature Complete Journals</source><creator>Kozhevnikov, V. A. ; Privalov, V. E.</creator><creatorcontrib>Kozhevnikov, V. A. ; Privalov, V. E.</creatorcontrib><description>The method proposed by the authors for solving the Helmholtz equation with homogeneous boundary conditions was verified for an elliptic cross section. The method is generalized to the Helmholtz equation with inhomogeneous boundary conditions. The generalization has been verified for circular and elliptical cross sections.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-021-02215-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boundary conditions ; Condensed Matter Physics ; Cross-sections ; Hadrons ; Heavy Ions ; Helmholtz equations ; Lasers ; Mathematical and Computational Physics ; Nuclear Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Russian physics journal, 2021, Vol.63 (9), p.1631-1638</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-9435128f4de317fcf82cbcab696a404cfb0175f0b536f65d7e80dd577722dd533</citedby><cites>FETCH-LOGICAL-c358t-9435128f4de317fcf82cbcab696a404cfb0175f0b536f65d7e80dd577722dd533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-021-02215-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-021-02215-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kozhevnikov, V. A.</creatorcontrib><creatorcontrib>Privalov, V. E.</creatorcontrib><title>Laser Gain for Inhomogeneous Boundary Conditions</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>The method proposed by the authors for solving the Helmholtz equation with homogeneous boundary conditions was verified for an elliptic cross section. The method is generalized to the Helmholtz equation with inhomogeneous boundary conditions. The generalization has been verified for circular and elliptical cross sections.</description><subject>Boundary conditions</subject><subject>Condensed Matter Physics</subject><subject>Cross-sections</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Helmholtz equations</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC59WZZPOnx1q0Fgpe9BzSbFK3tElNdg9-e1NX8CYhTBjeb_LmEXKLcI8A8iEjoqI1UCyXIq_lGZkgl6yeUarOyxtEUyul5CW5ynkHUDAhJwTWJrtULU0XKh9TtQof8RC3Lrg45OoxDqE16ataxNB2fRdDviYX3uyzu_mtU_L-_PS2eKnXr8vVYr6uLeOqr2cN40iVb1rHUHrrFbUbazZiJkwDjfUbQMk9bDgTXvBWOgVty6WUlJbK2JTcjXOPKX4OLvd6F4cUypeaNoqJBhBPqvtRtTV7p7vgY5-MLad1h87G4HxX-nPBsbgBpgpAR8CmmHNyXh9TdygragR9ilKPUeoSpf6JUssCsRHKRRy2Lv15-Yf6BkANdJs</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Kozhevnikov, V. A.</creator><creator>Privalov, V. E.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Laser Gain for Inhomogeneous Boundary Conditions</title><author>Kozhevnikov, V. A. ; Privalov, V. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-9435128f4de317fcf82cbcab696a404cfb0175f0b536f65d7e80dd577722dd533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Condensed Matter Physics</topic><topic>Cross-sections</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Helmholtz equations</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozhevnikov, V. A.</creatorcontrib><creatorcontrib>Privalov, V. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozhevnikov, V. A.</au><au>Privalov, V. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser Gain for Inhomogeneous Boundary Conditions</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2021</date><risdate>2021</risdate><volume>63</volume><issue>9</issue><spage>1631</spage><epage>1638</epage><pages>1631-1638</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The method proposed by the authors for solving the Helmholtz equation with homogeneous boundary conditions was verified for an elliptic cross section. The method is generalized to the Helmholtz equation with inhomogeneous boundary conditions. The generalization has been verified for circular and elliptical cross sections.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-021-02215-7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8887
ispartof Russian physics journal, 2021, Vol.63 (9), p.1631-1638
issn 1064-8887
1573-9228
language eng
recordid cdi_proquest_journals_2483640113
source SpringerNature Complete Journals
subjects Boundary conditions
Condensed Matter Physics
Cross-sections
Hadrons
Heavy Ions
Helmholtz equations
Lasers
Mathematical and Computational Physics
Nuclear Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Theoretical
title Laser Gain for Inhomogeneous Boundary Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20Gain%20for%20Inhomogeneous%20Boundary%20Conditions&rft.jtitle=Russian%20physics%20journal&rft.au=Kozhevnikov,%20V.%20A.&rft.date=2021&rft.volume=63&rft.issue=9&rft.spage=1631&rft.epage=1638&rft.pages=1631-1638&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-021-02215-7&rft_dat=%3Cgale_proqu%3EA651512038%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483640113&rft_id=info:pmid/&rft_galeid=A651512038&rfr_iscdi=true