Laser Gain for Inhomogeneous Boundary Conditions
The method proposed by the authors for solving the Helmholtz equation with homogeneous boundary conditions was verified for an elliptic cross section. The method is generalized to the Helmholtz equation with inhomogeneous boundary conditions. The generalization has been verified for circular and ell...
Gespeichert in:
Veröffentlicht in: | Russian physics journal 2021, Vol.63 (9), p.1631-1638 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1638 |
---|---|
container_issue | 9 |
container_start_page | 1631 |
container_title | Russian physics journal |
container_volume | 63 |
creator | Kozhevnikov, V. A. Privalov, V. E. |
description | The method proposed by the authors for solving the Helmholtz equation with homogeneous boundary conditions was verified for an elliptic cross section. The method is generalized to the Helmholtz equation with inhomogeneous boundary conditions. The generalization has been verified for circular and elliptical cross sections. |
doi_str_mv | 10.1007/s11182-021-02215-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2483640113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651512038</galeid><sourcerecordid>A651512038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-9435128f4de317fcf82cbcab696a404cfb0175f0b536f65d7e80dd577722dd533</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC59WZZPOnx1q0Fgpe9BzSbFK3tElNdg9-e1NX8CYhTBjeb_LmEXKLcI8A8iEjoqI1UCyXIq_lGZkgl6yeUarOyxtEUyul5CW5ynkHUDAhJwTWJrtULU0XKh9TtQof8RC3Lrg45OoxDqE16ataxNB2fRdDviYX3uyzu_mtU_L-_PS2eKnXr8vVYr6uLeOqr2cN40iVb1rHUHrrFbUbazZiJkwDjfUbQMk9bDgTXvBWOgVty6WUlJbK2JTcjXOPKX4OLvd6F4cUypeaNoqJBhBPqvtRtTV7p7vgY5-MLad1h87G4HxX-nPBsbgBpgpAR8CmmHNyXh9TdygragR9ilKPUeoSpf6JUssCsRHKRRy2Lv15-Yf6BkANdJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483640113</pqid></control><display><type>article</type><title>Laser Gain for Inhomogeneous Boundary Conditions</title><source>SpringerNature Complete Journals</source><creator>Kozhevnikov, V. A. ; Privalov, V. E.</creator><creatorcontrib>Kozhevnikov, V. A. ; Privalov, V. E.</creatorcontrib><description>The method proposed by the authors for solving the Helmholtz equation with homogeneous boundary conditions was verified for an elliptic cross section. The method is generalized to the Helmholtz equation with inhomogeneous boundary conditions. The generalization has been verified for circular and elliptical cross sections.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-021-02215-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boundary conditions ; Condensed Matter Physics ; Cross-sections ; Hadrons ; Heavy Ions ; Helmholtz equations ; Lasers ; Mathematical and Computational Physics ; Nuclear Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Russian physics journal, 2021, Vol.63 (9), p.1631-1638</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-9435128f4de317fcf82cbcab696a404cfb0175f0b536f65d7e80dd577722dd533</citedby><cites>FETCH-LOGICAL-c358t-9435128f4de317fcf82cbcab696a404cfb0175f0b536f65d7e80dd577722dd533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-021-02215-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-021-02215-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kozhevnikov, V. A.</creatorcontrib><creatorcontrib>Privalov, V. E.</creatorcontrib><title>Laser Gain for Inhomogeneous Boundary Conditions</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>The method proposed by the authors for solving the Helmholtz equation with homogeneous boundary conditions was verified for an elliptic cross section. The method is generalized to the Helmholtz equation with inhomogeneous boundary conditions. The generalization has been verified for circular and elliptical cross sections.</description><subject>Boundary conditions</subject><subject>Condensed Matter Physics</subject><subject>Cross-sections</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Helmholtz equations</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC59WZZPOnx1q0Fgpe9BzSbFK3tElNdg9-e1NX8CYhTBjeb_LmEXKLcI8A8iEjoqI1UCyXIq_lGZkgl6yeUarOyxtEUyul5CW5ynkHUDAhJwTWJrtULU0XKh9TtQof8RC3Lrg45OoxDqE16ataxNB2fRdDviYX3uyzu_mtU_L-_PS2eKnXr8vVYr6uLeOqr2cN40iVb1rHUHrrFbUbazZiJkwDjfUbQMk9bDgTXvBWOgVty6WUlJbK2JTcjXOPKX4OLvd6F4cUypeaNoqJBhBPqvtRtTV7p7vgY5-MLad1h87G4HxX-nPBsbgBpgpAR8CmmHNyXh9TdygragR9ilKPUeoSpf6JUssCsRHKRRy2Lv15-Yf6BkANdJs</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Kozhevnikov, V. A.</creator><creator>Privalov, V. E.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Laser Gain for Inhomogeneous Boundary Conditions</title><author>Kozhevnikov, V. A. ; Privalov, V. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-9435128f4de317fcf82cbcab696a404cfb0175f0b536f65d7e80dd577722dd533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Condensed Matter Physics</topic><topic>Cross-sections</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Helmholtz equations</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozhevnikov, V. A.</creatorcontrib><creatorcontrib>Privalov, V. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozhevnikov, V. A.</au><au>Privalov, V. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser Gain for Inhomogeneous Boundary Conditions</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2021</date><risdate>2021</risdate><volume>63</volume><issue>9</issue><spage>1631</spage><epage>1638</epage><pages>1631-1638</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The method proposed by the authors for solving the Helmholtz equation with homogeneous boundary conditions was verified for an elliptic cross section. The method is generalized to the Helmholtz equation with inhomogeneous boundary conditions. The generalization has been verified for circular and elliptical cross sections.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-021-02215-7</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8887 |
ispartof | Russian physics journal, 2021, Vol.63 (9), p.1631-1638 |
issn | 1064-8887 1573-9228 |
language | eng |
recordid | cdi_proquest_journals_2483640113 |
source | SpringerNature Complete Journals |
subjects | Boundary conditions Condensed Matter Physics Cross-sections Hadrons Heavy Ions Helmholtz equations Lasers Mathematical and Computational Physics Nuclear Physics Optical Devices Optics Photonics Physics Physics and Astronomy Theoretical |
title | Laser Gain for Inhomogeneous Boundary Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20Gain%20for%20Inhomogeneous%20Boundary%20Conditions&rft.jtitle=Russian%20physics%20journal&rft.au=Kozhevnikov,%20V.%20A.&rft.date=2021&rft.volume=63&rft.issue=9&rft.spage=1631&rft.epage=1638&rft.pages=1631-1638&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-021-02215-7&rft_dat=%3Cgale_proqu%3EA651512038%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483640113&rft_id=info:pmid/&rft_galeid=A651512038&rfr_iscdi=true |