Numerical Simulation Analysis of Ag Crystallite Effects on Interface of Front Metal and Silicon in the PERC Solar Cell
In the fabrication of crystalline silicon solar cells, the contact properties between the front metal electrode and silicon are one of the most important parameters for achieving high-efficiency, as it is an integral element in the formation of solar cell electrodes. This entails an increase in the...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2021-02, Vol.14 (3), p.592 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 592 |
container_title | Energies (Basel) |
container_volume | 14 |
creator | Jeong, Myeong Sang Lee, Yonghwan Kim, Ka-Hyun Choi, Sungjin Kang, Min Gu Kim, Soo Min Song, Hee-eun |
description | In the fabrication of crystalline silicon solar cells, the contact properties between the front metal electrode and silicon are one of the most important parameters for achieving high-efficiency, as it is an integral element in the formation of solar cell electrodes. This entails an increase in the surface recombination velocity and a drop in the open-circuit voltage of the solar cell; hence, controlling the recombination velocity at the metal-silicon interface becomes a critical factor in the process. In this study, the distribution of Ag crystallites formed on the silicon-metal interface, the surface recombination velocity in the silicon-metal interface and the resulting changes in the performance of the Passivated Emitter and Rear Contact (PERC) solar cells were analyzed by controlling the firing temperature. The Ag crystallite distribution gradually increased corresponding to a firing temperature increase from 850 ∘C to 950 ∘C. The surface recombination velocity at the silicon-metal interface increased from 353 to 599 cm/s and the open-circuit voltage of the PERC solar cell decreased from 659.7 to 647 mV. Technology Computer-Aided Design (TCAD) simulation was used for detailed analysis on the effect of the surface recombination velocity at the silicon-metal interface on the PERC solar cell performance. Simulations showed that the increase in the distribution of Ag crystallites and surface recombination velocity at the silicon-metal interface played an important role in the decrease of open-circuit voltage of the PERC solar cell at temperatures of 850–900 ∘C, whereas the damage caused by the emitter over fire was determined as the main cause of the voltage drop at 950 ∘C. These results are expected to serve as a steppingstone for further research on improvement in the silicon-metal interface properties of silicon-based solar cells and investigation on high-efficiency solar cells. |
doi_str_mv | 10.3390/en14030592 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2483492158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_409a8ef7850e42588bdb39b4f581512b</doaj_id><sourcerecordid>2483492158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-8dac17b8b08991035186eb6cbbe6d5ca364daa115cee2b4c55dcfa884851fdb03</originalsourceid><addsrcrecordid>eNpNkVFLHDEQgBexoKgv_oJA3wpnk02ylzwey6kHWqW2z2GSnWiO3EaTnHD_3rUn2nmZYebjG5hpmnNGLzjX9CeOTFBOpW4PmmOmdTdjdM4P_6uPmrNS1nQKzhnn_Lh5_bXdYA4OInkIm22EGtJIFiPEXQmFJE8Wj6TPu1IhxlCRLL1HV6fJSFZjxezB4Tt2mdNYyS1OHIFxmGwxuAkKI6lPSO6Xv3vykCJk0mOMp803D7Hg2Uc-af5eLv_017Obu6tVv7iZOd6xOlMDODa3ylKlNaNcMtWh7Zy12A3SAe_EAMCYdIitFU7KwXlQSijJ_GApP2lWe--QYG2ec9hA3pkEwfxrpPxoINfgIhpBNSj0cyUpilYqZQfLtRVeKiZZayfX973rOaeXLZZq1mmbp0sV0wrFhW6ZVBP1Y0-5nErJ6D-3Mmre32S-3sTfAGFbg-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483492158</pqid></control><display><type>article</type><title>Numerical Simulation Analysis of Ag Crystallite Effects on Interface of Front Metal and Silicon in the PERC Solar Cell</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jeong, Myeong Sang ; Lee, Yonghwan ; Kim, Ka-Hyun ; Choi, Sungjin ; Kang, Min Gu ; Kim, Soo Min ; Song, Hee-eun</creator><creatorcontrib>Jeong, Myeong Sang ; Lee, Yonghwan ; Kim, Ka-Hyun ; Choi, Sungjin ; Kang, Min Gu ; Kim, Soo Min ; Song, Hee-eun</creatorcontrib><description>In the fabrication of crystalline silicon solar cells, the contact properties between the front metal electrode and silicon are one of the most important parameters for achieving high-efficiency, as it is an integral element in the formation of solar cell electrodes. This entails an increase in the surface recombination velocity and a drop in the open-circuit voltage of the solar cell; hence, controlling the recombination velocity at the metal-silicon interface becomes a critical factor in the process. In this study, the distribution of Ag crystallites formed on the silicon-metal interface, the surface recombination velocity in the silicon-metal interface and the resulting changes in the performance of the Passivated Emitter and Rear Contact (PERC) solar cells were analyzed by controlling the firing temperature. The Ag crystallite distribution gradually increased corresponding to a firing temperature increase from 850 ∘C to 950 ∘C. The surface recombination velocity at the silicon-metal interface increased from 353 to 599 cm/s and the open-circuit voltage of the PERC solar cell decreased from 659.7 to 647 mV. Technology Computer-Aided Design (TCAD) simulation was used for detailed analysis on the effect of the surface recombination velocity at the silicon-metal interface on the PERC solar cell performance. Simulations showed that the increase in the distribution of Ag crystallites and surface recombination velocity at the silicon-metal interface played an important role in the decrease of open-circuit voltage of the PERC solar cell at temperatures of 850–900 ∘C, whereas the damage caused by the emitter over fire was determined as the main cause of the voltage drop at 950 ∘C. These results are expected to serve as a steppingstone for further research on improvement in the silicon-metal interface properties of silicon-based solar cells and investigation on high-efficiency solar cells.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en14030592</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ag crystallite ; Crystallites ; Crystals ; Efficiency ; Electric properties ; Electrodes ; Emitters ; Fabrication ; Fire damage ; Interfacial properties ; Mathematical models ; Metals ; numerical simulation analysis ; Open circuit voltage ; passivated emitter and rear contact solar cell ; Photovoltaic cells ; Recombination ; Screen printing ; Silicon ; silicon-metal interface ; Silver ; Simulation ; Simulation analysis ; Solar cells ; surface recombination ; TCAD ; Temperature ; Temperature effects ; Velocity ; Voltage ; Voltage drop</subject><ispartof>Energies (Basel), 2021-02, Vol.14 (3), p.592</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-8dac17b8b08991035186eb6cbbe6d5ca364daa115cee2b4c55dcfa884851fdb03</citedby><cites>FETCH-LOGICAL-c361t-8dac17b8b08991035186eb6cbbe6d5ca364daa115cee2b4c55dcfa884851fdb03</cites><orcidid>0000-0002-4763-2713 ; 0000-0002-0020-2935 ; 0000-0002-9144-7355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Jeong, Myeong Sang</creatorcontrib><creatorcontrib>Lee, Yonghwan</creatorcontrib><creatorcontrib>Kim, Ka-Hyun</creatorcontrib><creatorcontrib>Choi, Sungjin</creatorcontrib><creatorcontrib>Kang, Min Gu</creatorcontrib><creatorcontrib>Kim, Soo Min</creatorcontrib><creatorcontrib>Song, Hee-eun</creatorcontrib><title>Numerical Simulation Analysis of Ag Crystallite Effects on Interface of Front Metal and Silicon in the PERC Solar Cell</title><title>Energies (Basel)</title><description>In the fabrication of crystalline silicon solar cells, the contact properties between the front metal electrode and silicon are one of the most important parameters for achieving high-efficiency, as it is an integral element in the formation of solar cell electrodes. This entails an increase in the surface recombination velocity and a drop in the open-circuit voltage of the solar cell; hence, controlling the recombination velocity at the metal-silicon interface becomes a critical factor in the process. In this study, the distribution of Ag crystallites formed on the silicon-metal interface, the surface recombination velocity in the silicon-metal interface and the resulting changes in the performance of the Passivated Emitter and Rear Contact (PERC) solar cells were analyzed by controlling the firing temperature. The Ag crystallite distribution gradually increased corresponding to a firing temperature increase from 850 ∘C to 950 ∘C. The surface recombination velocity at the silicon-metal interface increased from 353 to 599 cm/s and the open-circuit voltage of the PERC solar cell decreased from 659.7 to 647 mV. Technology Computer-Aided Design (TCAD) simulation was used for detailed analysis on the effect of the surface recombination velocity at the silicon-metal interface on the PERC solar cell performance. Simulations showed that the increase in the distribution of Ag crystallites and surface recombination velocity at the silicon-metal interface played an important role in the decrease of open-circuit voltage of the PERC solar cell at temperatures of 850–900 ∘C, whereas the damage caused by the emitter over fire was determined as the main cause of the voltage drop at 950 ∘C. These results are expected to serve as a steppingstone for further research on improvement in the silicon-metal interface properties of silicon-based solar cells and investigation on high-efficiency solar cells.</description><subject>Ag crystallite</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Efficiency</subject><subject>Electric properties</subject><subject>Electrodes</subject><subject>Emitters</subject><subject>Fabrication</subject><subject>Fire damage</subject><subject>Interfacial properties</subject><subject>Mathematical models</subject><subject>Metals</subject><subject>numerical simulation analysis</subject><subject>Open circuit voltage</subject><subject>passivated emitter and rear contact solar cell</subject><subject>Photovoltaic cells</subject><subject>Recombination</subject><subject>Screen printing</subject><subject>Silicon</subject><subject>silicon-metal interface</subject><subject>Silver</subject><subject>Simulation</subject><subject>Simulation analysis</subject><subject>Solar cells</subject><subject>surface recombination</subject><subject>TCAD</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Velocity</subject><subject>Voltage</subject><subject>Voltage drop</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFLHDEQgBexoKgv_oJA3wpnk02ylzwey6kHWqW2z2GSnWiO3EaTnHD_3rUn2nmZYebjG5hpmnNGLzjX9CeOTFBOpW4PmmOmdTdjdM4P_6uPmrNS1nQKzhnn_Lh5_bXdYA4OInkIm22EGtJIFiPEXQmFJE8Wj6TPu1IhxlCRLL1HV6fJSFZjxezB4Tt2mdNYyS1OHIFxmGwxuAkKI6lPSO6Xv3vykCJk0mOMp803D7Hg2Uc-af5eLv_017Obu6tVv7iZOd6xOlMDODa3ylKlNaNcMtWh7Zy12A3SAe_EAMCYdIitFU7KwXlQSijJ_GApP2lWe--QYG2ec9hA3pkEwfxrpPxoINfgIhpBNSj0cyUpilYqZQfLtRVeKiZZayfX973rOaeXLZZq1mmbp0sV0wrFhW6ZVBP1Y0-5nErJ6D-3Mmre32S-3sTfAGFbg-g</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Jeong, Myeong Sang</creator><creator>Lee, Yonghwan</creator><creator>Kim, Ka-Hyun</creator><creator>Choi, Sungjin</creator><creator>Kang, Min Gu</creator><creator>Kim, Soo Min</creator><creator>Song, Hee-eun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4763-2713</orcidid><orcidid>https://orcid.org/0000-0002-0020-2935</orcidid><orcidid>https://orcid.org/0000-0002-9144-7355</orcidid></search><sort><creationdate>20210201</creationdate><title>Numerical Simulation Analysis of Ag Crystallite Effects on Interface of Front Metal and Silicon in the PERC Solar Cell</title><author>Jeong, Myeong Sang ; Lee, Yonghwan ; Kim, Ka-Hyun ; Choi, Sungjin ; Kang, Min Gu ; Kim, Soo Min ; Song, Hee-eun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-8dac17b8b08991035186eb6cbbe6d5ca364daa115cee2b4c55dcfa884851fdb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ag crystallite</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Efficiency</topic><topic>Electric properties</topic><topic>Electrodes</topic><topic>Emitters</topic><topic>Fabrication</topic><topic>Fire damage</topic><topic>Interfacial properties</topic><topic>Mathematical models</topic><topic>Metals</topic><topic>numerical simulation analysis</topic><topic>Open circuit voltage</topic><topic>passivated emitter and rear contact solar cell</topic><topic>Photovoltaic cells</topic><topic>Recombination</topic><topic>Screen printing</topic><topic>Silicon</topic><topic>silicon-metal interface</topic><topic>Silver</topic><topic>Simulation</topic><topic>Simulation analysis</topic><topic>Solar cells</topic><topic>surface recombination</topic><topic>TCAD</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Velocity</topic><topic>Voltage</topic><topic>Voltage drop</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Myeong Sang</creatorcontrib><creatorcontrib>Lee, Yonghwan</creatorcontrib><creatorcontrib>Kim, Ka-Hyun</creatorcontrib><creatorcontrib>Choi, Sungjin</creatorcontrib><creatorcontrib>Kang, Min Gu</creatorcontrib><creatorcontrib>Kim, Soo Min</creatorcontrib><creatorcontrib>Song, Hee-eun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Myeong Sang</au><au>Lee, Yonghwan</au><au>Kim, Ka-Hyun</au><au>Choi, Sungjin</au><au>Kang, Min Gu</au><au>Kim, Soo Min</au><au>Song, Hee-eun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation Analysis of Ag Crystallite Effects on Interface of Front Metal and Silicon in the PERC Solar Cell</atitle><jtitle>Energies (Basel)</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>14</volume><issue>3</issue><spage>592</spage><pages>592-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>In the fabrication of crystalline silicon solar cells, the contact properties between the front metal electrode and silicon are one of the most important parameters for achieving high-efficiency, as it is an integral element in the formation of solar cell electrodes. This entails an increase in the surface recombination velocity and a drop in the open-circuit voltage of the solar cell; hence, controlling the recombination velocity at the metal-silicon interface becomes a critical factor in the process. In this study, the distribution of Ag crystallites formed on the silicon-metal interface, the surface recombination velocity in the silicon-metal interface and the resulting changes in the performance of the Passivated Emitter and Rear Contact (PERC) solar cells were analyzed by controlling the firing temperature. The Ag crystallite distribution gradually increased corresponding to a firing temperature increase from 850 ∘C to 950 ∘C. The surface recombination velocity at the silicon-metal interface increased from 353 to 599 cm/s and the open-circuit voltage of the PERC solar cell decreased from 659.7 to 647 mV. Technology Computer-Aided Design (TCAD) simulation was used for detailed analysis on the effect of the surface recombination velocity at the silicon-metal interface on the PERC solar cell performance. Simulations showed that the increase in the distribution of Ag crystallites and surface recombination velocity at the silicon-metal interface played an important role in the decrease of open-circuit voltage of the PERC solar cell at temperatures of 850–900 ∘C, whereas the damage caused by the emitter over fire was determined as the main cause of the voltage drop at 950 ∘C. These results are expected to serve as a steppingstone for further research on improvement in the silicon-metal interface properties of silicon-based solar cells and investigation on high-efficiency solar cells.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en14030592</doi><orcidid>https://orcid.org/0000-0002-4763-2713</orcidid><orcidid>https://orcid.org/0000-0002-0020-2935</orcidid><orcidid>https://orcid.org/0000-0002-9144-7355</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2021-02, Vol.14 (3), p.592 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_proquest_journals_2483492158 |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Ag crystallite Crystallites Crystals Efficiency Electric properties Electrodes Emitters Fabrication Fire damage Interfacial properties Mathematical models Metals numerical simulation analysis Open circuit voltage passivated emitter and rear contact solar cell Photovoltaic cells Recombination Screen printing Silicon silicon-metal interface Silver Simulation Simulation analysis Solar cells surface recombination TCAD Temperature Temperature effects Velocity Voltage Voltage drop |
title | Numerical Simulation Analysis of Ag Crystallite Effects on Interface of Front Metal and Silicon in the PERC Solar Cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20Analysis%20of%20Ag%20Crystallite%20Effects%20on%20Interface%20of%20Front%20Metal%20and%20Silicon%20in%20the%20PERC%20Solar%20Cell&rft.jtitle=Energies%20(Basel)&rft.au=Jeong,%20Myeong%20Sang&rft.date=2021-02-01&rft.volume=14&rft.issue=3&rft.spage=592&rft.pages=592-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en14030592&rft_dat=%3Cproquest_doaj_%3E2483492158%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483492158&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_409a8ef7850e42588bdb39b4f581512b&rfr_iscdi=true |