On the Lagrangian structure of transport equations: relativistic Vlasov systems

We study the Lagrangian structure of relativistic Vlasov systems, such as the relativistic Vlasov-Poisson and the relativistic quasi-eletrostatic limit of Vlasov-Maxwell equations. We show that renormalized solutions of these systems are Lagrangian and that these notions of solution, in fact, coinci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-01
Hauptverfasser: Borrin, Henrique, Marcon, Diego
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Borrin, Henrique
Marcon, Diego
description We study the Lagrangian structure of relativistic Vlasov systems, such as the relativistic Vlasov-Poisson and the relativistic quasi-eletrostatic limit of Vlasov-Maxwell equations. We show that renormalized solutions of these systems are Lagrangian and that these notions of solution, in fact, coincide. As a consequence, finite-energy solutions are shown to be transported by a global flow. Moreover, we extend the notion of generalized solution for "effective" densities and we prove its existence. Finally, under a higher integrability assumption of the initial condition, we show that solutions have every energy bounded, even in the gravitational case. These results extend to our setting those obtained by Ambrosio, Colombo, and Figalli \cite{vlasovpoisson} for the Vlasov-Poisson system; here, we analyse relativistic systems and we consider the contribution of the magnetic force into the evolution equation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2483459207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483459207</sourcerecordid><originalsourceid>FETCH-proquest_journals_24834592073</originalsourceid><addsrcrecordid>eNqNisEKgkAURYcgSMp_eNBamGY0rW0ULQI30VYGGXXEZnTeG6G_z0Uf0OoezrkrFgkpD0mRCrFhMWLPORfHXGSZjFhZWqBOw0O1XtnWKAtIPtQUvAbXAC0WR-cJ9BQUGWfxDF4PC84GydTwGhS6GfCDpN-4Y-tGDajj327Z_nZ9Xu7J6N0UNFLVu-DtkiqRFjLNToLn8r_XF5GYP6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483459207</pqid></control><display><type>article</type><title>On the Lagrangian structure of transport equations: relativistic Vlasov systems</title><source>Freely Accessible Journals</source><creator>Borrin, Henrique ; Marcon, Diego</creator><creatorcontrib>Borrin, Henrique ; Marcon, Diego</creatorcontrib><description>We study the Lagrangian structure of relativistic Vlasov systems, such as the relativistic Vlasov-Poisson and the relativistic quasi-eletrostatic limit of Vlasov-Maxwell equations. We show that renormalized solutions of these systems are Lagrangian and that these notions of solution, in fact, coincide. As a consequence, finite-energy solutions are shown to be transported by a global flow. Moreover, we extend the notion of generalized solution for "effective" densities and we prove its existence. Finally, under a higher integrability assumption of the initial condition, we show that solutions have every energy bounded, even in the gravitational case. These results extend to our setting those obtained by Ambrosio, Colombo, and Figalli \cite{vlasovpoisson} for the Vlasov-Poisson system; here, we analyse relativistic systems and we consider the contribution of the magnetic force into the evolution equation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Magnetic fields ; Mathematical analysis ; Maxwell's equations ; Relativistic effects ; Transport equations</subject><ispartof>arXiv.org, 2021-01</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Borrin, Henrique</creatorcontrib><creatorcontrib>Marcon, Diego</creatorcontrib><title>On the Lagrangian structure of transport equations: relativistic Vlasov systems</title><title>arXiv.org</title><description>We study the Lagrangian structure of relativistic Vlasov systems, such as the relativistic Vlasov-Poisson and the relativistic quasi-eletrostatic limit of Vlasov-Maxwell equations. We show that renormalized solutions of these systems are Lagrangian and that these notions of solution, in fact, coincide. As a consequence, finite-energy solutions are shown to be transported by a global flow. Moreover, we extend the notion of generalized solution for "effective" densities and we prove its existence. Finally, under a higher integrability assumption of the initial condition, we show that solutions have every energy bounded, even in the gravitational case. These results extend to our setting those obtained by Ambrosio, Colombo, and Figalli \cite{vlasovpoisson} for the Vlasov-Poisson system; here, we analyse relativistic systems and we consider the contribution of the magnetic force into the evolution equation.</description><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Maxwell's equations</subject><subject>Relativistic effects</subject><subject>Transport equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKgkAURYcgSMp_eNBamGY0rW0ULQI30VYGGXXEZnTeG6G_z0Uf0OoezrkrFgkpD0mRCrFhMWLPORfHXGSZjFhZWqBOw0O1XtnWKAtIPtQUvAbXAC0WR-cJ9BQUGWfxDF4PC84GydTwGhS6GfCDpN-4Y-tGDajj327Z_nZ9Xu7J6N0UNFLVu-DtkiqRFjLNToLn8r_XF5GYP6o</recordid><startdate>20210128</startdate><enddate>20210128</enddate><creator>Borrin, Henrique</creator><creator>Marcon, Diego</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210128</creationdate><title>On the Lagrangian structure of transport equations: relativistic Vlasov systems</title><author>Borrin, Henrique ; Marcon, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24834592073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Maxwell's equations</topic><topic>Relativistic effects</topic><topic>Transport equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Borrin, Henrique</creatorcontrib><creatorcontrib>Marcon, Diego</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borrin, Henrique</au><au>Marcon, Diego</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Lagrangian structure of transport equations: relativistic Vlasov systems</atitle><jtitle>arXiv.org</jtitle><date>2021-01-28</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We study the Lagrangian structure of relativistic Vlasov systems, such as the relativistic Vlasov-Poisson and the relativistic quasi-eletrostatic limit of Vlasov-Maxwell equations. We show that renormalized solutions of these systems are Lagrangian and that these notions of solution, in fact, coincide. As a consequence, finite-energy solutions are shown to be transported by a global flow. Moreover, we extend the notion of generalized solution for "effective" densities and we prove its existence. Finally, under a higher integrability assumption of the initial condition, we show that solutions have every energy bounded, even in the gravitational case. These results extend to our setting those obtained by Ambrosio, Colombo, and Figalli \cite{vlasovpoisson} for the Vlasov-Poisson system; here, we analyse relativistic systems and we consider the contribution of the magnetic force into the evolution equation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2483459207
source Freely Accessible Journals
subjects Magnetic fields
Mathematical analysis
Maxwell's equations
Relativistic effects
Transport equations
title On the Lagrangian structure of transport equations: relativistic Vlasov systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Lagrangian%20structure%20of%20transport%20equations:%20relativistic%20Vlasov%20systems&rft.jtitle=arXiv.org&rft.au=Borrin,%20Henrique&rft.date=2021-01-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2483459207%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483459207&rft_id=info:pmid/&rfr_iscdi=true