Distributed fixed-time optimization for multi-agent systems over a directed network
This paper proposes some distributed algorithms to solve the multi-agent optimization problem with equality constraints, in which the team objective is a sum of local convex objective functions. Firstly, a directed network related to equality constraints is constructed before converting the constrai...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2021, Vol.103 (1), p.775-789 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 789 |
---|---|
container_issue | 1 |
container_start_page | 775 |
container_title | Nonlinear dynamics |
container_volume | 103 |
creator | Yu, Zhiyong Yu, Shuzhen Jiang, Haijun Mei, Xuehui |
description | This paper proposes some distributed algorithms to solve the multi-agent optimization problem with equality constraints, in which the team objective is a sum of local convex objective functions. Firstly, a directed network related to equality constraints is constructed before converting the constrained optimization problem into an unconstrained one. Secondly, a continuous algorithm is designed by using local information of agents, and the objective function converges to the global optimum in a fixed-time interval. Moreover, in order to reduce the communication cost, an event-triggered algorithm with sign function is devised. It is found that the optimal value can be achieved in a fixed-time interval, but the sign function can cause high-frequency chattering when the sate variables converge to the optimal value. Therefore, an event-triggered algorithm with saturation function is proposed, which can effectively overcome this disadvantage. Finally, the proposed algorithms are verified by some numerical simulations. |
doi_str_mv | 10.1007/s11071-020-06116-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2483414664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483414664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1e7595b5a631a9debf1e19d076c757759bf89c7bb7bf6ef57f73acc4d86d66a83</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gsMRveixM7GRHfUiUGQOpmOYldubRxsR2g_HpSgsTGdId3z33SIeQU4RwB5EVEBIkMMmAgEAXDPTLBQnKWiWq-TyZQZTmDCuaH5CjGJQDwDMoJebp2MQVX98m01LpP07Lk1ob6zRDuSyfnO2p9oOt-lRzTC9MlGrcxmXWk_t0Eqmnrgml2fGfShw-vx-TA6lU0J785JS-3N89X92z2ePdwdTljDccqMTSyqIq60IKjrlpTWzRYtSBFIws53GpbVo2sa1lbYWwhreS6afK2FK0QuuRTcjbuboJ_601Maun70A0vVZaXPMdciHxoZWOrCT7GYKzaBLfWYasQ1E6eGuWpQZ76kadwgPgIxaHcLUz4m_6H-gZQ63Ok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483414664</pqid></control><display><type>article</type><title>Distributed fixed-time optimization for multi-agent systems over a directed network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yu, Zhiyong ; Yu, Shuzhen ; Jiang, Haijun ; Mei, Xuehui</creator><creatorcontrib>Yu, Zhiyong ; Yu, Shuzhen ; Jiang, Haijun ; Mei, Xuehui</creatorcontrib><description>This paper proposes some distributed algorithms to solve the multi-agent optimization problem with equality constraints, in which the team objective is a sum of local convex objective functions. Firstly, a directed network related to equality constraints is constructed before converting the constrained optimization problem into an unconstrained one. Secondly, a continuous algorithm is designed by using local information of agents, and the objective function converges to the global optimum in a fixed-time interval. Moreover, in order to reduce the communication cost, an event-triggered algorithm with sign function is devised. It is found that the optimal value can be achieved in a fixed-time interval, but the sign function can cause high-frequency chattering when the sate variables converge to the optimal value. Therefore, an event-triggered algorithm with saturation function is proposed, which can effectively overcome this disadvantage. Finally, the proposed algorithms are verified by some numerical simulations.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-020-06116-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Automotive Engineering ; Classical Mechanics ; Constraints ; Control ; Convergence ; Dynamical Systems ; Engineering ; Mechanical Engineering ; Multiagent systems ; Optimization ; Original Paper ; Vibration</subject><ispartof>Nonlinear dynamics, 2021, Vol.103 (1), p.775-789</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1e7595b5a631a9debf1e19d076c757759bf89c7bb7bf6ef57f73acc4d86d66a83</citedby><cites>FETCH-LOGICAL-c319t-1e7595b5a631a9debf1e19d076c757759bf89c7bb7bf6ef57f73acc4d86d66a83</cites><orcidid>0000-0002-0310-6842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-020-06116-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-020-06116-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yu, Zhiyong</creatorcontrib><creatorcontrib>Yu, Shuzhen</creatorcontrib><creatorcontrib>Jiang, Haijun</creatorcontrib><creatorcontrib>Mei, Xuehui</creatorcontrib><title>Distributed fixed-time optimization for multi-agent systems over a directed network</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This paper proposes some distributed algorithms to solve the multi-agent optimization problem with equality constraints, in which the team objective is a sum of local convex objective functions. Firstly, a directed network related to equality constraints is constructed before converting the constrained optimization problem into an unconstrained one. Secondly, a continuous algorithm is designed by using local information of agents, and the objective function converges to the global optimum in a fixed-time interval. Moreover, in order to reduce the communication cost, an event-triggered algorithm with sign function is devised. It is found that the optimal value can be achieved in a fixed-time interval, but the sign function can cause high-frequency chattering when the sate variables converge to the optimal value. Therefore, an event-triggered algorithm with saturation function is proposed, which can effectively overcome this disadvantage. Finally, the proposed algorithms are verified by some numerical simulations.</description><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Constraints</subject><subject>Control</subject><subject>Convergence</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mechanical Engineering</subject><subject>Multiagent systems</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAURS0EEqXwB5gsMRveixM7GRHfUiUGQOpmOYldubRxsR2g_HpSgsTGdId3z33SIeQU4RwB5EVEBIkMMmAgEAXDPTLBQnKWiWq-TyZQZTmDCuaH5CjGJQDwDMoJebp2MQVX98m01LpP07Lk1ob6zRDuSyfnO2p9oOt-lRzTC9MlGrcxmXWk_t0Eqmnrgml2fGfShw-vx-TA6lU0J785JS-3N89X92z2ePdwdTljDccqMTSyqIq60IKjrlpTWzRYtSBFIws53GpbVo2sa1lbYWwhreS6afK2FK0QuuRTcjbuboJ_601Maun70A0vVZaXPMdciHxoZWOrCT7GYKzaBLfWYasQ1E6eGuWpQZ76kadwgPgIxaHcLUz4m_6H-gZQ63Ok</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yu, Zhiyong</creator><creator>Yu, Shuzhen</creator><creator>Jiang, Haijun</creator><creator>Mei, Xuehui</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0310-6842</orcidid></search><sort><creationdate>2021</creationdate><title>Distributed fixed-time optimization for multi-agent systems over a directed network</title><author>Yu, Zhiyong ; Yu, Shuzhen ; Jiang, Haijun ; Mei, Xuehui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1e7595b5a631a9debf1e19d076c757759bf89c7bb7bf6ef57f73acc4d86d66a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Constraints</topic><topic>Control</topic><topic>Convergence</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mechanical Engineering</topic><topic>Multiagent systems</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Zhiyong</creatorcontrib><creatorcontrib>Yu, Shuzhen</creatorcontrib><creatorcontrib>Jiang, Haijun</creatorcontrib><creatorcontrib>Mei, Xuehui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Zhiyong</au><au>Yu, Shuzhen</au><au>Jiang, Haijun</au><au>Mei, Xuehui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed fixed-time optimization for multi-agent systems over a directed network</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2021</date><risdate>2021</risdate><volume>103</volume><issue>1</issue><spage>775</spage><epage>789</epage><pages>775-789</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper proposes some distributed algorithms to solve the multi-agent optimization problem with equality constraints, in which the team objective is a sum of local convex objective functions. Firstly, a directed network related to equality constraints is constructed before converting the constrained optimization problem into an unconstrained one. Secondly, a continuous algorithm is designed by using local information of agents, and the objective function converges to the global optimum in a fixed-time interval. Moreover, in order to reduce the communication cost, an event-triggered algorithm with sign function is devised. It is found that the optimal value can be achieved in a fixed-time interval, but the sign function can cause high-frequency chattering when the sate variables converge to the optimal value. Therefore, an event-triggered algorithm with saturation function is proposed, which can effectively overcome this disadvantage. Finally, the proposed algorithms are verified by some numerical simulations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-020-06116-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0310-6842</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2021, Vol.103 (1), p.775-789 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2483414664 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Automotive Engineering Classical Mechanics Constraints Control Convergence Dynamical Systems Engineering Mechanical Engineering Multiagent systems Optimization Original Paper Vibration |
title | Distributed fixed-time optimization for multi-agent systems over a directed network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20fixed-time%20optimization%20for%20multi-agent%20systems%20over%20a%20directed%20network&rft.jtitle=Nonlinear%20dynamics&rft.au=Yu,%20Zhiyong&rft.date=2021&rft.volume=103&rft.issue=1&rft.spage=775&rft.epage=789&rft.pages=775-789&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-020-06116-1&rft_dat=%3Cproquest_cross%3E2483414664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483414664&rft_id=info:pmid/&rfr_iscdi=true |