Role of magnetic anisotropy on the heating mechanism of Co-doped Fe3O4 nanoparticles

The heating characteristics of CoxFe3-xO4 (x = 0, 0.1, and 0.3) nanoparticles of average particle size 10–12 nm were investigated. The electron spin resonance analysis revealed an enhancement in magnetic anisotropy from 16 to 21 kJm−3 with low Co doping of x = 0.1. Magnetic measurements performed at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2020-12, Vol.598, p.412429, Article 412429
Hauptverfasser: Anandhi, J. Shebha, Arun, T., Joseyphus, R. Justin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 412429
container_title Physica. B, Condensed matter
container_volume 598
creator Anandhi, J. Shebha
Arun, T.
Joseyphus, R. Justin
description The heating characteristics of CoxFe3-xO4 (x = 0, 0.1, and 0.3) nanoparticles of average particle size 10–12 nm were investigated. The electron spin resonance analysis revealed an enhancement in magnetic anisotropy from 16 to 21 kJm−3 with low Co doping of x = 0.1. Magnetic measurements performed at 15 K showed a coercivity of 290 kAm−1 for the x = 0.1 composition, that decreased to 37 kAm−1 on surface modification. The effective specific absorption rate (ESAR) obtained using infrared thermography demonstrated a decreasing trend from 3.16 to 2.84 nHm2kg−1 due to the increase in magnetic anisotropy associated with Co substitution. An increase in ESAR up to 4.42 nHm2kg−1 was estimated with surface modification of Co-doped Fe3O4. The theoretically estimated ESAR considering polydispersity and experimental results presented decreasing behavior with magnetic anisotropy as per the linear response theory. •Co-doped Fe3O4 nanoparticles were obtained with an average size of 10-12 nm.•Electron spin resonance experiment indicated magnetic anisotropy of 21 kJm-3 with low Co-doping.•Effective specific absorption rate (ESAR) increases with decreasing magnetic anisotropy.•ESAR value reached a maximum of 4.42 nHm2kg-1 with surface modification.•Particles that comply with linear response theory exhibit better heating efficiency.
doi_str_mv 10.1016/j.physb.2020.412429
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2483103471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092145262030435X</els_id><sourcerecordid>2483103471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-4ed6c31bf9581d3f7f3f488faa7365ee90307a97af7ebe329c58bbfc30aa67853</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBFwscU7wX-LkwAFVFJAqVULlbDnOunHUxMFOkfr2JJQze9nDzsxqPoTuKUkpofljmw7NKVYpI4ykgjLBygu0oIXkCaM8u0QLUjKaiIzl1-gmxpZMQyVdoN2HPwD2Fnd638PoDNa9i34Mfjhh3-OxAdyAHl2_xx2YZr52s37lk9oPUOM18K3Ave79oMMUcIB4i66sPkS4-9tL9Ll-2a3eks329X31vEkML-WYCKhzw2lly6ygNbfSciuKwmoteZ4BlIQTqUuprYQKOCtNVlSVNZxoncsi40v0cM4dgv86QhxV64-hn14qJgpOCReSTip-VpngYwxg1RBcp8NJUaJmfKpVv_jUjE-d8U2up7MLpgLfDoKKxkFvoHYBzKhq7_71_wBPj3me</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483103471</pqid></control><display><type>article</type><title>Role of magnetic anisotropy on the heating mechanism of Co-doped Fe3O4 nanoparticles</title><source>Access via ScienceDirect (Elsevier)</source><creator>Anandhi, J. Shebha ; Arun, T. ; Joseyphus, R. Justin</creator><creatorcontrib>Anandhi, J. Shebha ; Arun, T. ; Joseyphus, R. Justin</creatorcontrib><description>The heating characteristics of CoxFe3-xO4 (x = 0, 0.1, and 0.3) nanoparticles of average particle size 10–12 nm were investigated. The electron spin resonance analysis revealed an enhancement in magnetic anisotropy from 16 to 21 kJm−3 with low Co doping of x = 0.1. Magnetic measurements performed at 15 K showed a coercivity of 290 kAm−1 for the x = 0.1 composition, that decreased to 37 kAm−1 on surface modification. The effective specific absorption rate (ESAR) obtained using infrared thermography demonstrated a decreasing trend from 3.16 to 2.84 nHm2kg−1 due to the increase in magnetic anisotropy associated with Co substitution. An increase in ESAR up to 4.42 nHm2kg−1 was estimated with surface modification of Co-doped Fe3O4. The theoretically estimated ESAR considering polydispersity and experimental results presented decreasing behavior with magnetic anisotropy as per the linear response theory. •Co-doped Fe3O4 nanoparticles were obtained with an average size of 10-12 nm.•Electron spin resonance experiment indicated magnetic anisotropy of 21 kJm-3 with low Co-doping.•Effective specific absorption rate (ESAR) increases with decreasing magnetic anisotropy.•ESAR value reached a maximum of 4.42 nHm2kg-1 with surface modification.•Particles that comply with linear response theory exhibit better heating efficiency.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2020.412429</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Cobalt ; Cobalt ferrites ; Coercivity ; Electron paramagnetic resonance ; Electron spin ; Heating ; Hyperthermia ; Infrared imaging ; Iron oxides ; Magnetic anisotropy ; Magnetic measurement ; Magnetism ; Magnetite nanoparticles ; Nanoparticles ; Polydispersity ; Specific absorption rate ; Spin resonance ; Studies ; Superparamagnetism ; Thermography</subject><ispartof>Physica. B, Condensed matter, 2020-12, Vol.598, p.412429, Article 412429</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-4ed6c31bf9581d3f7f3f488faa7365ee90307a97af7ebe329c58bbfc30aa67853</citedby><cites>FETCH-LOGICAL-c397t-4ed6c31bf9581d3f7f3f488faa7365ee90307a97af7ebe329c58bbfc30aa67853</cites><orcidid>0000-0001-8847-1939 ; 0000-0002-9395-959X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physb.2020.412429$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Anandhi, J. Shebha</creatorcontrib><creatorcontrib>Arun, T.</creatorcontrib><creatorcontrib>Joseyphus, R. Justin</creatorcontrib><title>Role of magnetic anisotropy on the heating mechanism of Co-doped Fe3O4 nanoparticles</title><title>Physica. B, Condensed matter</title><description>The heating characteristics of CoxFe3-xO4 (x = 0, 0.1, and 0.3) nanoparticles of average particle size 10–12 nm were investigated. The electron spin resonance analysis revealed an enhancement in magnetic anisotropy from 16 to 21 kJm−3 with low Co doping of x = 0.1. Magnetic measurements performed at 15 K showed a coercivity of 290 kAm−1 for the x = 0.1 composition, that decreased to 37 kAm−1 on surface modification. The effective specific absorption rate (ESAR) obtained using infrared thermography demonstrated a decreasing trend from 3.16 to 2.84 nHm2kg−1 due to the increase in magnetic anisotropy associated with Co substitution. An increase in ESAR up to 4.42 nHm2kg−1 was estimated with surface modification of Co-doped Fe3O4. The theoretically estimated ESAR considering polydispersity and experimental results presented decreasing behavior with magnetic anisotropy as per the linear response theory. •Co-doped Fe3O4 nanoparticles were obtained with an average size of 10-12 nm.•Electron spin resonance experiment indicated magnetic anisotropy of 21 kJm-3 with low Co-doping.•Effective specific absorption rate (ESAR) increases with decreasing magnetic anisotropy.•ESAR value reached a maximum of 4.42 nHm2kg-1 with surface modification.•Particles that comply with linear response theory exhibit better heating efficiency.</description><subject>Anisotropy</subject><subject>Cobalt</subject><subject>Cobalt ferrites</subject><subject>Coercivity</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Heating</subject><subject>Hyperthermia</subject><subject>Infrared imaging</subject><subject>Iron oxides</subject><subject>Magnetic anisotropy</subject><subject>Magnetic measurement</subject><subject>Magnetism</subject><subject>Magnetite nanoparticles</subject><subject>Nanoparticles</subject><subject>Polydispersity</subject><subject>Specific absorption rate</subject><subject>Spin resonance</subject><subject>Studies</subject><subject>Superparamagnetism</subject><subject>Thermography</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBFwscU7wX-LkwAFVFJAqVULlbDnOunHUxMFOkfr2JJQze9nDzsxqPoTuKUkpofljmw7NKVYpI4ykgjLBygu0oIXkCaM8u0QLUjKaiIzl1-gmxpZMQyVdoN2HPwD2Fnd638PoDNa9i34Mfjhh3-OxAdyAHl2_xx2YZr52s37lk9oPUOM18K3Ave79oMMUcIB4i66sPkS4-9tL9Ll-2a3eks329X31vEkML-WYCKhzw2lly6ygNbfSciuKwmoteZ4BlIQTqUuprYQKOCtNVlSVNZxoncsi40v0cM4dgv86QhxV64-hn14qJgpOCReSTip-VpngYwxg1RBcp8NJUaJmfKpVv_jUjE-d8U2up7MLpgLfDoKKxkFvoHYBzKhq7_71_wBPj3me</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Anandhi, J. Shebha</creator><creator>Arun, T.</creator><creator>Joseyphus, R. Justin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8847-1939</orcidid><orcidid>https://orcid.org/0000-0002-9395-959X</orcidid></search><sort><creationdate>20201201</creationdate><title>Role of magnetic anisotropy on the heating mechanism of Co-doped Fe3O4 nanoparticles</title><author>Anandhi, J. Shebha ; Arun, T. ; Joseyphus, R. Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-4ed6c31bf9581d3f7f3f488faa7365ee90307a97af7ebe329c58bbfc30aa67853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Cobalt</topic><topic>Cobalt ferrites</topic><topic>Coercivity</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Heating</topic><topic>Hyperthermia</topic><topic>Infrared imaging</topic><topic>Iron oxides</topic><topic>Magnetic anisotropy</topic><topic>Magnetic measurement</topic><topic>Magnetism</topic><topic>Magnetite nanoparticles</topic><topic>Nanoparticles</topic><topic>Polydispersity</topic><topic>Specific absorption rate</topic><topic>Spin resonance</topic><topic>Studies</topic><topic>Superparamagnetism</topic><topic>Thermography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anandhi, J. Shebha</creatorcontrib><creatorcontrib>Arun, T.</creatorcontrib><creatorcontrib>Joseyphus, R. Justin</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anandhi, J. Shebha</au><au>Arun, T.</au><au>Joseyphus, R. Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of magnetic anisotropy on the heating mechanism of Co-doped Fe3O4 nanoparticles</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>598</volume><spage>412429</spage><pages>412429-</pages><artnum>412429</artnum><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>The heating characteristics of CoxFe3-xO4 (x = 0, 0.1, and 0.3) nanoparticles of average particle size 10–12 nm were investigated. The electron spin resonance analysis revealed an enhancement in magnetic anisotropy from 16 to 21 kJm−3 with low Co doping of x = 0.1. Magnetic measurements performed at 15 K showed a coercivity of 290 kAm−1 for the x = 0.1 composition, that decreased to 37 kAm−1 on surface modification. The effective specific absorption rate (ESAR) obtained using infrared thermography demonstrated a decreasing trend from 3.16 to 2.84 nHm2kg−1 due to the increase in magnetic anisotropy associated with Co substitution. An increase in ESAR up to 4.42 nHm2kg−1 was estimated with surface modification of Co-doped Fe3O4. The theoretically estimated ESAR considering polydispersity and experimental results presented decreasing behavior with magnetic anisotropy as per the linear response theory. •Co-doped Fe3O4 nanoparticles were obtained with an average size of 10-12 nm.•Electron spin resonance experiment indicated magnetic anisotropy of 21 kJm-3 with low Co-doping.•Effective specific absorption rate (ESAR) increases with decreasing magnetic anisotropy.•ESAR value reached a maximum of 4.42 nHm2kg-1 with surface modification.•Particles that comply with linear response theory exhibit better heating efficiency.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2020.412429</doi><orcidid>https://orcid.org/0000-0001-8847-1939</orcidid><orcidid>https://orcid.org/0000-0002-9395-959X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2020-12, Vol.598, p.412429, Article 412429
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_journals_2483103471
source Access via ScienceDirect (Elsevier)
subjects Anisotropy
Cobalt
Cobalt ferrites
Coercivity
Electron paramagnetic resonance
Electron spin
Heating
Hyperthermia
Infrared imaging
Iron oxides
Magnetic anisotropy
Magnetic measurement
Magnetism
Magnetite nanoparticles
Nanoparticles
Polydispersity
Specific absorption rate
Spin resonance
Studies
Superparamagnetism
Thermography
title Role of magnetic anisotropy on the heating mechanism of Co-doped Fe3O4 nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20magnetic%20anisotropy%20on%20the%20heating%20mechanism%20of%20Co-doped%20Fe3O4%20nanoparticles&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Anandhi,%20J.%20Shebha&rft.date=2020-12-01&rft.volume=598&rft.spage=412429&rft.pages=412429-&rft.artnum=412429&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2020.412429&rft_dat=%3Cproquest_cross%3E2483103471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483103471&rft_id=info:pmid/&rft_els_id=S092145262030435X&rfr_iscdi=true