Role of magnetic anisotropy on the heating mechanism of Co-doped Fe3O4 nanoparticles
The heating characteristics of CoxFe3-xO4 (x = 0, 0.1, and 0.3) nanoparticles of average particle size 10–12 nm were investigated. The electron spin resonance analysis revealed an enhancement in magnetic anisotropy from 16 to 21 kJm−3 with low Co doping of x = 0.1. Magnetic measurements performed at...
Gespeichert in:
Veröffentlicht in: | Physica. B, Condensed matter Condensed matter, 2020-12, Vol.598, p.412429, Article 412429 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 412429 |
container_title | Physica. B, Condensed matter |
container_volume | 598 |
creator | Anandhi, J. Shebha Arun, T. Joseyphus, R. Justin |
description | The heating characteristics of CoxFe3-xO4 (x = 0, 0.1, and 0.3) nanoparticles of average particle size 10–12 nm were investigated. The electron spin resonance analysis revealed an enhancement in magnetic anisotropy from 16 to 21 kJm−3 with low Co doping of x = 0.1. Magnetic measurements performed at 15 K showed a coercivity of 290 kAm−1 for the x = 0.1 composition, that decreased to 37 kAm−1 on surface modification. The effective specific absorption rate (ESAR) obtained using infrared thermography demonstrated a decreasing trend from 3.16 to 2.84 nHm2kg−1 due to the increase in magnetic anisotropy associated with Co substitution. An increase in ESAR up to 4.42 nHm2kg−1 was estimated with surface modification of Co-doped Fe3O4. The theoretically estimated ESAR considering polydispersity and experimental results presented decreasing behavior with magnetic anisotropy as per the linear response theory.
•Co-doped Fe3O4 nanoparticles were obtained with an average size of 10-12 nm.•Electron spin resonance experiment indicated magnetic anisotropy of 21 kJm-3 with low Co-doping.•Effective specific absorption rate (ESAR) increases with decreasing magnetic anisotropy.•ESAR value reached a maximum of 4.42 nHm2kg-1 with surface modification.•Particles that comply with linear response theory exhibit better heating efficiency. |
doi_str_mv | 10.1016/j.physb.2020.412429 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2483103471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092145262030435X</els_id><sourcerecordid>2483103471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-4ed6c31bf9581d3f7f3f488faa7365ee90307a97af7ebe329c58bbfc30aa67853</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBFwscU7wX-LkwAFVFJAqVULlbDnOunHUxMFOkfr2JJQze9nDzsxqPoTuKUkpofljmw7NKVYpI4ykgjLBygu0oIXkCaM8u0QLUjKaiIzl1-gmxpZMQyVdoN2HPwD2Fnd638PoDNa9i34Mfjhh3-OxAdyAHl2_xx2YZr52s37lk9oPUOM18K3Ave79oMMUcIB4i66sPkS4-9tL9Ll-2a3eks329X31vEkML-WYCKhzw2lly6ygNbfSciuKwmoteZ4BlIQTqUuprYQKOCtNVlSVNZxoncsi40v0cM4dgv86QhxV64-hn14qJgpOCReSTip-VpngYwxg1RBcp8NJUaJmfKpVv_jUjE-d8U2up7MLpgLfDoKKxkFvoHYBzKhq7_71_wBPj3me</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483103471</pqid></control><display><type>article</type><title>Role of magnetic anisotropy on the heating mechanism of Co-doped Fe3O4 nanoparticles</title><source>Access via ScienceDirect (Elsevier)</source><creator>Anandhi, J. Shebha ; Arun, T. ; Joseyphus, R. Justin</creator><creatorcontrib>Anandhi, J. Shebha ; Arun, T. ; Joseyphus, R. Justin</creatorcontrib><description>The heating characteristics of CoxFe3-xO4 (x = 0, 0.1, and 0.3) nanoparticles of average particle size 10–12 nm were investigated. The electron spin resonance analysis revealed an enhancement in magnetic anisotropy from 16 to 21 kJm−3 with low Co doping of x = 0.1. Magnetic measurements performed at 15 K showed a coercivity of 290 kAm−1 for the x = 0.1 composition, that decreased to 37 kAm−1 on surface modification. The effective specific absorption rate (ESAR) obtained using infrared thermography demonstrated a decreasing trend from 3.16 to 2.84 nHm2kg−1 due to the increase in magnetic anisotropy associated with Co substitution. An increase in ESAR up to 4.42 nHm2kg−1 was estimated with surface modification of Co-doped Fe3O4. The theoretically estimated ESAR considering polydispersity and experimental results presented decreasing behavior with magnetic anisotropy as per the linear response theory.
•Co-doped Fe3O4 nanoparticles were obtained with an average size of 10-12 nm.•Electron spin resonance experiment indicated magnetic anisotropy of 21 kJm-3 with low Co-doping.•Effective specific absorption rate (ESAR) increases with decreasing magnetic anisotropy.•ESAR value reached a maximum of 4.42 nHm2kg-1 with surface modification.•Particles that comply with linear response theory exhibit better heating efficiency.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2020.412429</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Cobalt ; Cobalt ferrites ; Coercivity ; Electron paramagnetic resonance ; Electron spin ; Heating ; Hyperthermia ; Infrared imaging ; Iron oxides ; Magnetic anisotropy ; Magnetic measurement ; Magnetism ; Magnetite nanoparticles ; Nanoparticles ; Polydispersity ; Specific absorption rate ; Spin resonance ; Studies ; Superparamagnetism ; Thermography</subject><ispartof>Physica. B, Condensed matter, 2020-12, Vol.598, p.412429, Article 412429</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-4ed6c31bf9581d3f7f3f488faa7365ee90307a97af7ebe329c58bbfc30aa67853</citedby><cites>FETCH-LOGICAL-c397t-4ed6c31bf9581d3f7f3f488faa7365ee90307a97af7ebe329c58bbfc30aa67853</cites><orcidid>0000-0001-8847-1939 ; 0000-0002-9395-959X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physb.2020.412429$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Anandhi, J. Shebha</creatorcontrib><creatorcontrib>Arun, T.</creatorcontrib><creatorcontrib>Joseyphus, R. Justin</creatorcontrib><title>Role of magnetic anisotropy on the heating mechanism of Co-doped Fe3O4 nanoparticles</title><title>Physica. B, Condensed matter</title><description>The heating characteristics of CoxFe3-xO4 (x = 0, 0.1, and 0.3) nanoparticles of average particle size 10–12 nm were investigated. The electron spin resonance analysis revealed an enhancement in magnetic anisotropy from 16 to 21 kJm−3 with low Co doping of x = 0.1. Magnetic measurements performed at 15 K showed a coercivity of 290 kAm−1 for the x = 0.1 composition, that decreased to 37 kAm−1 on surface modification. The effective specific absorption rate (ESAR) obtained using infrared thermography demonstrated a decreasing trend from 3.16 to 2.84 nHm2kg−1 due to the increase in magnetic anisotropy associated with Co substitution. An increase in ESAR up to 4.42 nHm2kg−1 was estimated with surface modification of Co-doped Fe3O4. The theoretically estimated ESAR considering polydispersity and experimental results presented decreasing behavior with magnetic anisotropy as per the linear response theory.
•Co-doped Fe3O4 nanoparticles were obtained with an average size of 10-12 nm.•Electron spin resonance experiment indicated magnetic anisotropy of 21 kJm-3 with low Co-doping.•Effective specific absorption rate (ESAR) increases with decreasing magnetic anisotropy.•ESAR value reached a maximum of 4.42 nHm2kg-1 with surface modification.•Particles that comply with linear response theory exhibit better heating efficiency.</description><subject>Anisotropy</subject><subject>Cobalt</subject><subject>Cobalt ferrites</subject><subject>Coercivity</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Heating</subject><subject>Hyperthermia</subject><subject>Infrared imaging</subject><subject>Iron oxides</subject><subject>Magnetic anisotropy</subject><subject>Magnetic measurement</subject><subject>Magnetism</subject><subject>Magnetite nanoparticles</subject><subject>Nanoparticles</subject><subject>Polydispersity</subject><subject>Specific absorption rate</subject><subject>Spin resonance</subject><subject>Studies</subject><subject>Superparamagnetism</subject><subject>Thermography</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBFwscU7wX-LkwAFVFJAqVULlbDnOunHUxMFOkfr2JJQze9nDzsxqPoTuKUkpofljmw7NKVYpI4ykgjLBygu0oIXkCaM8u0QLUjKaiIzl1-gmxpZMQyVdoN2HPwD2Fnd638PoDNa9i34Mfjhh3-OxAdyAHl2_xx2YZr52s37lk9oPUOM18K3Ave79oMMUcIB4i66sPkS4-9tL9Ll-2a3eks329X31vEkML-WYCKhzw2lly6ygNbfSciuKwmoteZ4BlIQTqUuprYQKOCtNVlSVNZxoncsi40v0cM4dgv86QhxV64-hn14qJgpOCReSTip-VpngYwxg1RBcp8NJUaJmfKpVv_jUjE-d8U2up7MLpgLfDoKKxkFvoHYBzKhq7_71_wBPj3me</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Anandhi, J. Shebha</creator><creator>Arun, T.</creator><creator>Joseyphus, R. Justin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8847-1939</orcidid><orcidid>https://orcid.org/0000-0002-9395-959X</orcidid></search><sort><creationdate>20201201</creationdate><title>Role of magnetic anisotropy on the heating mechanism of Co-doped Fe3O4 nanoparticles</title><author>Anandhi, J. Shebha ; Arun, T. ; Joseyphus, R. Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-4ed6c31bf9581d3f7f3f488faa7365ee90307a97af7ebe329c58bbfc30aa67853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Cobalt</topic><topic>Cobalt ferrites</topic><topic>Coercivity</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Heating</topic><topic>Hyperthermia</topic><topic>Infrared imaging</topic><topic>Iron oxides</topic><topic>Magnetic anisotropy</topic><topic>Magnetic measurement</topic><topic>Magnetism</topic><topic>Magnetite nanoparticles</topic><topic>Nanoparticles</topic><topic>Polydispersity</topic><topic>Specific absorption rate</topic><topic>Spin resonance</topic><topic>Studies</topic><topic>Superparamagnetism</topic><topic>Thermography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anandhi, J. Shebha</creatorcontrib><creatorcontrib>Arun, T.</creatorcontrib><creatorcontrib>Joseyphus, R. Justin</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anandhi, J. Shebha</au><au>Arun, T.</au><au>Joseyphus, R. Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of magnetic anisotropy on the heating mechanism of Co-doped Fe3O4 nanoparticles</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>598</volume><spage>412429</spage><pages>412429-</pages><artnum>412429</artnum><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>The heating characteristics of CoxFe3-xO4 (x = 0, 0.1, and 0.3) nanoparticles of average particle size 10–12 nm were investigated. The electron spin resonance analysis revealed an enhancement in magnetic anisotropy from 16 to 21 kJm−3 with low Co doping of x = 0.1. Magnetic measurements performed at 15 K showed a coercivity of 290 kAm−1 for the x = 0.1 composition, that decreased to 37 kAm−1 on surface modification. The effective specific absorption rate (ESAR) obtained using infrared thermography demonstrated a decreasing trend from 3.16 to 2.84 nHm2kg−1 due to the increase in magnetic anisotropy associated with Co substitution. An increase in ESAR up to 4.42 nHm2kg−1 was estimated with surface modification of Co-doped Fe3O4. The theoretically estimated ESAR considering polydispersity and experimental results presented decreasing behavior with magnetic anisotropy as per the linear response theory.
•Co-doped Fe3O4 nanoparticles were obtained with an average size of 10-12 nm.•Electron spin resonance experiment indicated magnetic anisotropy of 21 kJm-3 with low Co-doping.•Effective specific absorption rate (ESAR) increases with decreasing magnetic anisotropy.•ESAR value reached a maximum of 4.42 nHm2kg-1 with surface modification.•Particles that comply with linear response theory exhibit better heating efficiency.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2020.412429</doi><orcidid>https://orcid.org/0000-0001-8847-1939</orcidid><orcidid>https://orcid.org/0000-0002-9395-959X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-4526 |
ispartof | Physica. B, Condensed matter, 2020-12, Vol.598, p.412429, Article 412429 |
issn | 0921-4526 1873-2135 |
language | eng |
recordid | cdi_proquest_journals_2483103471 |
source | Access via ScienceDirect (Elsevier) |
subjects | Anisotropy Cobalt Cobalt ferrites Coercivity Electron paramagnetic resonance Electron spin Heating Hyperthermia Infrared imaging Iron oxides Magnetic anisotropy Magnetic measurement Magnetism Magnetite nanoparticles Nanoparticles Polydispersity Specific absorption rate Spin resonance Studies Superparamagnetism Thermography |
title | Role of magnetic anisotropy on the heating mechanism of Co-doped Fe3O4 nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20magnetic%20anisotropy%20on%20the%20heating%20mechanism%20of%20Co-doped%20Fe3O4%20nanoparticles&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Anandhi,%20J.%20Shebha&rft.date=2020-12-01&rft.volume=598&rft.spage=412429&rft.pages=412429-&rft.artnum=412429&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2020.412429&rft_dat=%3Cproquest_cross%3E2483103471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483103471&rft_id=info:pmid/&rft_els_id=S092145262030435X&rfr_iscdi=true |