Chloride Diffusion in Limestone Flash Calcined Clay Cement Concrete

This study aims to assess the influence of using a flash-calcined clay and limestone blend as a supplementary cementitious material on the chloride diffusion resistance of concrete. A limestone and calcined-clay blend was used as any other supplementary cementitious material (SCM) in Australia is by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACI materials journal 2020-11, Vol.117 (6), p.165-175
Hauptverfasser: Nguyen, Quang Dieu, Khan, Mohammad S. H, Castel, Arnaud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 6
container_start_page 165
container_title ACI materials journal
container_volume 117
creator Nguyen, Quang Dieu
Khan, Mohammad S. H
Castel, Arnaud
description This study aims to assess the influence of using a flash-calcined clay and limestone blend as a supplementary cementitious material on the chloride diffusion resistance of concrete. A limestone and calcined-clay blend was used as any other supplementary cementitious material (SCM) in Australia is by straight replacement of general purpose cement in the concrete mixture without any optimization of sulfate content or alkalinity of the blended cement to reduce the time for the adoption of limestone and flash-calcined-clay blends in the industry. The bulk diffusion test results show that the resistance of concrete containing a flash-calcined clay and limestone blend (LC3 concrete) to chloride diffusion is greatly improved compared to that of a reference general purpose cement-based concrete. The apparent chloride diffusion coefficient of LC3 concrete is more than four times lower due to the increase in its chloride binding capacity and refinement of pore structure. Chloride binding capacity is not captured by the rapid chloride penetration test (RCPT) or rapid migration test (RMT). Hence, accelerated test protocols involving externally applied electrical voltage greatly underestimate the resistance of LC3 concrete to chloride diffusion. Keywords: accelerated test; binding capacity; chloride diffusion; flash calcined clay; Friedel's salt; limestone-calcined clay-cement (LC3); limestone.
doi_str_mv 10.14359/51725986
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2483101748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681543427</galeid><sourcerecordid>A681543427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-f1f3880f0e25870ad093e35f8deae204d38b0412bc645ace3025ef4c6a296dd23</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgrR78BwFPHrbmczd7LNGqUPCi4G1Jk4lN2U1qsj34712sgszhDY95M_MeQteULKjgsr2TtGGyVfUJmhGl2ooz-X76rz9HF6XsCGG1lHKGtN72KQcH-D54fyghRRwiXocBypgi4FVvyhZr09sQwWHdmy-sYYA4Yp2izTDCJTrzpi9w9Ytz9LZ6eNVP1frl8Vkv15VlSoyVp54rRTwBJlVDjCMtBy69cmCAEeG42hBB2cbWQhoLnDAJXtjasLZ2jvE5ujnu3ef0eZj-63bpkON0smNCcUpoM8EcLY5TH6aHLkSfxmzsVA6GYCdLPkz8slZUCi5YMwlujwKbUykZfLfPYTD5q6Ok-wm1-wuVfwPVvWdX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483101748</pqid></control><display><type>article</type><title>Chloride Diffusion in Limestone Flash Calcined Clay Cement Concrete</title><source>American Concrete Institute Online Journal Archives</source><creator>Nguyen, Quang Dieu ; Khan, Mohammad S. H ; Castel, Arnaud</creator><creatorcontrib>Nguyen, Quang Dieu ; Khan, Mohammad S. H ; Castel, Arnaud</creatorcontrib><description>This study aims to assess the influence of using a flash-calcined clay and limestone blend as a supplementary cementitious material on the chloride diffusion resistance of concrete. A limestone and calcined-clay blend was used as any other supplementary cementitious material (SCM) in Australia is by straight replacement of general purpose cement in the concrete mixture without any optimization of sulfate content or alkalinity of the blended cement to reduce the time for the adoption of limestone and flash-calcined-clay blends in the industry. The bulk diffusion test results show that the resistance of concrete containing a flash-calcined clay and limestone blend (LC3 concrete) to chloride diffusion is greatly improved compared to that of a reference general purpose cement-based concrete. The apparent chloride diffusion coefficient of LC3 concrete is more than four times lower due to the increase in its chloride binding capacity and refinement of pore structure. Chloride binding capacity is not captured by the rapid chloride penetration test (RCPT) or rapid migration test (RMT). Hence, accelerated test protocols involving externally applied electrical voltage greatly underestimate the resistance of LC3 concrete to chloride diffusion. Keywords: accelerated test; binding capacity; chloride diffusion; flash calcined clay; Friedel's salt; limestone-calcined clay-cement (LC3); limestone.</description><identifier>ISSN: 0889-325X</identifier><identifier>EISSN: 0889-325X</identifier><identifier>EISSN: 1944-737X</identifier><identifier>DOI: 10.14359/51725986</identifier><language>eng</language><publisher>Farmington Hills: American Concrete Institute</publisher><subject>Accelerated tests ; Alkalinity ; Analysis ; Binding ; Cement ; Chemical properties ; Chloride ; Chloride resistance ; Chlorides ; Clay ; Concrete ; Construction industry ; Corrosion ; Design ; Dichloropropane ; Diffusion ; Diffusion coefficient ; Hydration ; Infrastructure ; Limestone ; Mechanical properties ; Optimization ; Particle size ; Porosity ; Roasting ; Test procedures ; Testing</subject><ispartof>ACI materials journal, 2020-11, Vol.117 (6), p.165-175</ispartof><rights>COPYRIGHT 2020 American Concrete Institute</rights><rights>Copyright American Concrete Institute Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Nguyen, Quang Dieu</creatorcontrib><creatorcontrib>Khan, Mohammad S. H</creatorcontrib><creatorcontrib>Castel, Arnaud</creatorcontrib><title>Chloride Diffusion in Limestone Flash Calcined Clay Cement Concrete</title><title>ACI materials journal</title><description>This study aims to assess the influence of using a flash-calcined clay and limestone blend as a supplementary cementitious material on the chloride diffusion resistance of concrete. A limestone and calcined-clay blend was used as any other supplementary cementitious material (SCM) in Australia is by straight replacement of general purpose cement in the concrete mixture without any optimization of sulfate content or alkalinity of the blended cement to reduce the time for the adoption of limestone and flash-calcined-clay blends in the industry. The bulk diffusion test results show that the resistance of concrete containing a flash-calcined clay and limestone blend (LC3 concrete) to chloride diffusion is greatly improved compared to that of a reference general purpose cement-based concrete. The apparent chloride diffusion coefficient of LC3 concrete is more than four times lower due to the increase in its chloride binding capacity and refinement of pore structure. Chloride binding capacity is not captured by the rapid chloride penetration test (RCPT) or rapid migration test (RMT). Hence, accelerated test protocols involving externally applied electrical voltage greatly underestimate the resistance of LC3 concrete to chloride diffusion. Keywords: accelerated test; binding capacity; chloride diffusion; flash calcined clay; Friedel's salt; limestone-calcined clay-cement (LC3); limestone.</description><subject>Accelerated tests</subject><subject>Alkalinity</subject><subject>Analysis</subject><subject>Binding</subject><subject>Cement</subject><subject>Chemical properties</subject><subject>Chloride</subject><subject>Chloride resistance</subject><subject>Chlorides</subject><subject>Clay</subject><subject>Concrete</subject><subject>Construction industry</subject><subject>Corrosion</subject><subject>Design</subject><subject>Dichloropropane</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Hydration</subject><subject>Infrastructure</subject><subject>Limestone</subject><subject>Mechanical properties</subject><subject>Optimization</subject><subject>Particle size</subject><subject>Porosity</subject><subject>Roasting</subject><subject>Test procedures</subject><subject>Testing</subject><issn>0889-325X</issn><issn>0889-325X</issn><issn>1944-737X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNUE1LAzEQDaJgrR78BwFPHrbmczd7LNGqUPCi4G1Jk4lN2U1qsj34712sgszhDY95M_MeQteULKjgsr2TtGGyVfUJmhGl2ooz-X76rz9HF6XsCGG1lHKGtN72KQcH-D54fyghRRwiXocBypgi4FVvyhZr09sQwWHdmy-sYYA4Yp2izTDCJTrzpi9w9Ytz9LZ6eNVP1frl8Vkv15VlSoyVp54rRTwBJlVDjCMtBy69cmCAEeG42hBB2cbWQhoLnDAJXtjasLZ2jvE5ujnu3ef0eZj-63bpkON0smNCcUpoM8EcLY5TH6aHLkSfxmzsVA6GYCdLPkz8slZUCi5YMwlujwKbUykZfLfPYTD5q6Ok-wm1-wuVfwPVvWdX</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Nguyen, Quang Dieu</creator><creator>Khan, Mohammad S. H</creator><creator>Castel, Arnaud</creator><general>American Concrete Institute</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QQ</scope><scope>7RQ</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20201101</creationdate><title>Chloride Diffusion in Limestone Flash Calcined Clay Cement Concrete</title><author>Nguyen, Quang Dieu ; Khan, Mohammad S. H ; Castel, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-f1f3880f0e25870ad093e35f8deae204d38b0412bc645ace3025ef4c6a296dd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerated tests</topic><topic>Alkalinity</topic><topic>Analysis</topic><topic>Binding</topic><topic>Cement</topic><topic>Chemical properties</topic><topic>Chloride</topic><topic>Chloride resistance</topic><topic>Chlorides</topic><topic>Clay</topic><topic>Concrete</topic><topic>Construction industry</topic><topic>Corrosion</topic><topic>Design</topic><topic>Dichloropropane</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Hydration</topic><topic>Infrastructure</topic><topic>Limestone</topic><topic>Mechanical properties</topic><topic>Optimization</topic><topic>Particle size</topic><topic>Porosity</topic><topic>Roasting</topic><topic>Test procedures</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Quang Dieu</creatorcontrib><creatorcontrib>Khan, Mohammad S. H</creatorcontrib><creatorcontrib>Castel, Arnaud</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Ceramic Abstracts</collection><collection>Career &amp; Technical Education Database</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>ACI materials journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Quang Dieu</au><au>Khan, Mohammad S. H</au><au>Castel, Arnaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chloride Diffusion in Limestone Flash Calcined Clay Cement Concrete</atitle><jtitle>ACI materials journal</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>117</volume><issue>6</issue><spage>165</spage><epage>175</epage><pages>165-175</pages><issn>0889-325X</issn><eissn>0889-325X</eissn><eissn>1944-737X</eissn><abstract>This study aims to assess the influence of using a flash-calcined clay and limestone blend as a supplementary cementitious material on the chloride diffusion resistance of concrete. A limestone and calcined-clay blend was used as any other supplementary cementitious material (SCM) in Australia is by straight replacement of general purpose cement in the concrete mixture without any optimization of sulfate content or alkalinity of the blended cement to reduce the time for the adoption of limestone and flash-calcined-clay blends in the industry. The bulk diffusion test results show that the resistance of concrete containing a flash-calcined clay and limestone blend (LC3 concrete) to chloride diffusion is greatly improved compared to that of a reference general purpose cement-based concrete. The apparent chloride diffusion coefficient of LC3 concrete is more than four times lower due to the increase in its chloride binding capacity and refinement of pore structure. Chloride binding capacity is not captured by the rapid chloride penetration test (RCPT) or rapid migration test (RMT). Hence, accelerated test protocols involving externally applied electrical voltage greatly underestimate the resistance of LC3 concrete to chloride diffusion. Keywords: accelerated test; binding capacity; chloride diffusion; flash calcined clay; Friedel's salt; limestone-calcined clay-cement (LC3); limestone.</abstract><cop>Farmington Hills</cop><pub>American Concrete Institute</pub><doi>10.14359/51725986</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0889-325X
ispartof ACI materials journal, 2020-11, Vol.117 (6), p.165-175
issn 0889-325X
0889-325X
1944-737X
language eng
recordid cdi_proquest_journals_2483101748
source American Concrete Institute Online Journal Archives
subjects Accelerated tests
Alkalinity
Analysis
Binding
Cement
Chemical properties
Chloride
Chloride resistance
Chlorides
Clay
Concrete
Construction industry
Corrosion
Design
Dichloropropane
Diffusion
Diffusion coefficient
Hydration
Infrastructure
Limestone
Mechanical properties
Optimization
Particle size
Porosity
Roasting
Test procedures
Testing
title Chloride Diffusion in Limestone Flash Calcined Clay Cement Concrete
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A13%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chloride%20Diffusion%20in%20Limestone%20Flash%20Calcined%20Clay%20Cement%20Concrete&rft.jtitle=ACI%20materials%20journal&rft.au=Nguyen,%20Quang%20Dieu&rft.date=2020-11-01&rft.volume=117&rft.issue=6&rft.spage=165&rft.epage=175&rft.pages=165-175&rft.issn=0889-325X&rft.eissn=0889-325X&rft_id=info:doi/10.14359/51725986&rft_dat=%3Cgale_proqu%3EA681543427%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483101748&rft_id=info:pmid/&rft_galeid=A681543427&rfr_iscdi=true