Chloride Diffusion in Limestone Flash Calcined Clay Cement Concrete
This study aims to assess the influence of using a flash-calcined clay and limestone blend as a supplementary cementitious material on the chloride diffusion resistance of concrete. A limestone and calcined-clay blend was used as any other supplementary cementitious material (SCM) in Australia is by...
Gespeichert in:
Veröffentlicht in: | ACI materials journal 2020-11, Vol.117 (6), p.165-175 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175 |
---|---|
container_issue | 6 |
container_start_page | 165 |
container_title | ACI materials journal |
container_volume | 117 |
creator | Nguyen, Quang Dieu Khan, Mohammad S. H Castel, Arnaud |
description | This study aims to assess the influence of using a flash-calcined clay and limestone blend as a supplementary cementitious material on the chloride diffusion resistance of concrete. A limestone and calcined-clay blend was used as any other supplementary cementitious material (SCM) in Australia is by straight replacement of general purpose cement in the concrete mixture without any optimization of sulfate content or alkalinity of the blended cement to reduce the time for the adoption of limestone and flash-calcined-clay blends in the industry. The bulk diffusion test results show that the resistance of concrete containing a flash-calcined clay and limestone blend (LC3 concrete) to chloride diffusion is greatly improved compared to that of a reference general purpose cement-based concrete. The apparent chloride diffusion coefficient of LC3 concrete is more than four times lower due to the increase in its chloride binding capacity and refinement of pore structure. Chloride binding capacity is not captured by the rapid chloride penetration test (RCPT) or rapid migration test (RMT). Hence, accelerated test protocols involving externally applied electrical voltage greatly underestimate the resistance of LC3 concrete to chloride diffusion. Keywords: accelerated test; binding capacity; chloride diffusion; flash calcined clay; Friedel's salt; limestone-calcined clay-cement (LC3); limestone. |
doi_str_mv | 10.14359/51725986 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2483101748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681543427</galeid><sourcerecordid>A681543427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-f1f3880f0e25870ad093e35f8deae204d38b0412bc645ace3025ef4c6a296dd23</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgrR78BwFPHrbmczd7LNGqUPCi4G1Jk4lN2U1qsj34712sgszhDY95M_MeQteULKjgsr2TtGGyVfUJmhGl2ooz-X76rz9HF6XsCGG1lHKGtN72KQcH-D54fyghRRwiXocBypgi4FVvyhZr09sQwWHdmy-sYYA4Yp2izTDCJTrzpi9w9Ytz9LZ6eNVP1frl8Vkv15VlSoyVp54rRTwBJlVDjCMtBy69cmCAEeG42hBB2cbWQhoLnDAJXtjasLZ2jvE5ujnu3ef0eZj-63bpkON0smNCcUpoM8EcLY5TH6aHLkSfxmzsVA6GYCdLPkz8slZUCi5YMwlujwKbUykZfLfPYTD5q6Ok-wm1-wuVfwPVvWdX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483101748</pqid></control><display><type>article</type><title>Chloride Diffusion in Limestone Flash Calcined Clay Cement Concrete</title><source>American Concrete Institute Online Journal Archives</source><creator>Nguyen, Quang Dieu ; Khan, Mohammad S. H ; Castel, Arnaud</creator><creatorcontrib>Nguyen, Quang Dieu ; Khan, Mohammad S. H ; Castel, Arnaud</creatorcontrib><description>This study aims to assess the influence of using a flash-calcined clay and limestone blend as a supplementary cementitious material on the chloride diffusion resistance of concrete. A limestone and calcined-clay blend was used as any other supplementary cementitious material (SCM) in Australia is by straight replacement of general purpose cement in the concrete mixture without any optimization of sulfate content or alkalinity of the blended cement to reduce the time for the adoption of limestone and flash-calcined-clay blends in the industry. The bulk diffusion test results show that the resistance of concrete containing a flash-calcined clay and limestone blend (LC3 concrete) to chloride diffusion is greatly improved compared to that of a reference general purpose cement-based concrete. The apparent chloride diffusion coefficient of LC3 concrete is more than four times lower due to the increase in its chloride binding capacity and refinement of pore structure. Chloride binding capacity is not captured by the rapid chloride penetration test (RCPT) or rapid migration test (RMT). Hence, accelerated test protocols involving externally applied electrical voltage greatly underestimate the resistance of LC3 concrete to chloride diffusion. Keywords: accelerated test; binding capacity; chloride diffusion; flash calcined clay; Friedel's salt; limestone-calcined clay-cement (LC3); limestone.</description><identifier>ISSN: 0889-325X</identifier><identifier>EISSN: 0889-325X</identifier><identifier>EISSN: 1944-737X</identifier><identifier>DOI: 10.14359/51725986</identifier><language>eng</language><publisher>Farmington Hills: American Concrete Institute</publisher><subject>Accelerated tests ; Alkalinity ; Analysis ; Binding ; Cement ; Chemical properties ; Chloride ; Chloride resistance ; Chlorides ; Clay ; Concrete ; Construction industry ; Corrosion ; Design ; Dichloropropane ; Diffusion ; Diffusion coefficient ; Hydration ; Infrastructure ; Limestone ; Mechanical properties ; Optimization ; Particle size ; Porosity ; Roasting ; Test procedures ; Testing</subject><ispartof>ACI materials journal, 2020-11, Vol.117 (6), p.165-175</ispartof><rights>COPYRIGHT 2020 American Concrete Institute</rights><rights>Copyright American Concrete Institute Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Nguyen, Quang Dieu</creatorcontrib><creatorcontrib>Khan, Mohammad S. H</creatorcontrib><creatorcontrib>Castel, Arnaud</creatorcontrib><title>Chloride Diffusion in Limestone Flash Calcined Clay Cement Concrete</title><title>ACI materials journal</title><description>This study aims to assess the influence of using a flash-calcined clay and limestone blend as a supplementary cementitious material on the chloride diffusion resistance of concrete. A limestone and calcined-clay blend was used as any other supplementary cementitious material (SCM) in Australia is by straight replacement of general purpose cement in the concrete mixture without any optimization of sulfate content or alkalinity of the blended cement to reduce the time for the adoption of limestone and flash-calcined-clay blends in the industry. The bulk diffusion test results show that the resistance of concrete containing a flash-calcined clay and limestone blend (LC3 concrete) to chloride diffusion is greatly improved compared to that of a reference general purpose cement-based concrete. The apparent chloride diffusion coefficient of LC3 concrete is more than four times lower due to the increase in its chloride binding capacity and refinement of pore structure. Chloride binding capacity is not captured by the rapid chloride penetration test (RCPT) or rapid migration test (RMT). Hence, accelerated test protocols involving externally applied electrical voltage greatly underestimate the resistance of LC3 concrete to chloride diffusion. Keywords: accelerated test; binding capacity; chloride diffusion; flash calcined clay; Friedel's salt; limestone-calcined clay-cement (LC3); limestone.</description><subject>Accelerated tests</subject><subject>Alkalinity</subject><subject>Analysis</subject><subject>Binding</subject><subject>Cement</subject><subject>Chemical properties</subject><subject>Chloride</subject><subject>Chloride resistance</subject><subject>Chlorides</subject><subject>Clay</subject><subject>Concrete</subject><subject>Construction industry</subject><subject>Corrosion</subject><subject>Design</subject><subject>Dichloropropane</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Hydration</subject><subject>Infrastructure</subject><subject>Limestone</subject><subject>Mechanical properties</subject><subject>Optimization</subject><subject>Particle size</subject><subject>Porosity</subject><subject>Roasting</subject><subject>Test procedures</subject><subject>Testing</subject><issn>0889-325X</issn><issn>0889-325X</issn><issn>1944-737X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNUE1LAzEQDaJgrR78BwFPHrbmczd7LNGqUPCi4G1Jk4lN2U1qsj34712sgszhDY95M_MeQteULKjgsr2TtGGyVfUJmhGl2ooz-X76rz9HF6XsCGG1lHKGtN72KQcH-D54fyghRRwiXocBypgi4FVvyhZr09sQwWHdmy-sYYA4Yp2izTDCJTrzpi9w9Ytz9LZ6eNVP1frl8Vkv15VlSoyVp54rRTwBJlVDjCMtBy69cmCAEeG42hBB2cbWQhoLnDAJXtjasLZ2jvE5ujnu3ef0eZj-63bpkON0smNCcUpoM8EcLY5TH6aHLkSfxmzsVA6GYCdLPkz8slZUCi5YMwlujwKbUykZfLfPYTD5q6Ok-wm1-wuVfwPVvWdX</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Nguyen, Quang Dieu</creator><creator>Khan, Mohammad S. H</creator><creator>Castel, Arnaud</creator><general>American Concrete Institute</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QQ</scope><scope>7RQ</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20201101</creationdate><title>Chloride Diffusion in Limestone Flash Calcined Clay Cement Concrete</title><author>Nguyen, Quang Dieu ; Khan, Mohammad S. H ; Castel, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-f1f3880f0e25870ad093e35f8deae204d38b0412bc645ace3025ef4c6a296dd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerated tests</topic><topic>Alkalinity</topic><topic>Analysis</topic><topic>Binding</topic><topic>Cement</topic><topic>Chemical properties</topic><topic>Chloride</topic><topic>Chloride resistance</topic><topic>Chlorides</topic><topic>Clay</topic><topic>Concrete</topic><topic>Construction industry</topic><topic>Corrosion</topic><topic>Design</topic><topic>Dichloropropane</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Hydration</topic><topic>Infrastructure</topic><topic>Limestone</topic><topic>Mechanical properties</topic><topic>Optimization</topic><topic>Particle size</topic><topic>Porosity</topic><topic>Roasting</topic><topic>Test procedures</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Quang Dieu</creatorcontrib><creatorcontrib>Khan, Mohammad S. H</creatorcontrib><creatorcontrib>Castel, Arnaud</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Ceramic Abstracts</collection><collection>Career & Technical Education Database</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>ACI materials journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Quang Dieu</au><au>Khan, Mohammad S. H</au><au>Castel, Arnaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chloride Diffusion in Limestone Flash Calcined Clay Cement Concrete</atitle><jtitle>ACI materials journal</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>117</volume><issue>6</issue><spage>165</spage><epage>175</epage><pages>165-175</pages><issn>0889-325X</issn><eissn>0889-325X</eissn><eissn>1944-737X</eissn><abstract>This study aims to assess the influence of using a flash-calcined clay and limestone blend as a supplementary cementitious material on the chloride diffusion resistance of concrete. A limestone and calcined-clay blend was used as any other supplementary cementitious material (SCM) in Australia is by straight replacement of general purpose cement in the concrete mixture without any optimization of sulfate content or alkalinity of the blended cement to reduce the time for the adoption of limestone and flash-calcined-clay blends in the industry. The bulk diffusion test results show that the resistance of concrete containing a flash-calcined clay and limestone blend (LC3 concrete) to chloride diffusion is greatly improved compared to that of a reference general purpose cement-based concrete. The apparent chloride diffusion coefficient of LC3 concrete is more than four times lower due to the increase in its chloride binding capacity and refinement of pore structure. Chloride binding capacity is not captured by the rapid chloride penetration test (RCPT) or rapid migration test (RMT). Hence, accelerated test protocols involving externally applied electrical voltage greatly underestimate the resistance of LC3 concrete to chloride diffusion. Keywords: accelerated test; binding capacity; chloride diffusion; flash calcined clay; Friedel's salt; limestone-calcined clay-cement (LC3); limestone.</abstract><cop>Farmington Hills</cop><pub>American Concrete Institute</pub><doi>10.14359/51725986</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0889-325X |
ispartof | ACI materials journal, 2020-11, Vol.117 (6), p.165-175 |
issn | 0889-325X 0889-325X 1944-737X |
language | eng |
recordid | cdi_proquest_journals_2483101748 |
source | American Concrete Institute Online Journal Archives |
subjects | Accelerated tests Alkalinity Analysis Binding Cement Chemical properties Chloride Chloride resistance Chlorides Clay Concrete Construction industry Corrosion Design Dichloropropane Diffusion Diffusion coefficient Hydration Infrastructure Limestone Mechanical properties Optimization Particle size Porosity Roasting Test procedures Testing |
title | Chloride Diffusion in Limestone Flash Calcined Clay Cement Concrete |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A13%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chloride%20Diffusion%20in%20Limestone%20Flash%20Calcined%20Clay%20Cement%20Concrete&rft.jtitle=ACI%20materials%20journal&rft.au=Nguyen,%20Quang%20Dieu&rft.date=2020-11-01&rft.volume=117&rft.issue=6&rft.spage=165&rft.epage=175&rft.pages=165-175&rft.issn=0889-325X&rft.eissn=0889-325X&rft_id=info:doi/10.14359/51725986&rft_dat=%3Cgale_proqu%3EA681543427%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483101748&rft_id=info:pmid/&rft_galeid=A681543427&rfr_iscdi=true |