Duet Fe3C and FeNx Sites for H2O2 Generation and Activation toward Enhanced Electro-Fenton Performance in Wastewater Treatment

Heterogeneous electro-Fenton (HEF) reaction has been considered as a promising process for real effluent treatments. However, the design of effective catalysts for simultaneous H2O2 generation and activation to achieve bifunctional catalysis for O2 toward •OH production remains a challenge. Herein,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2021-01, Vol.55 (2), p.1260
Hauptverfasser: Hu, Jingjing, Wang, Sen, Yu, Jiaqi, Nie, Wenkai, Sun, Jie, Wang, Shaobin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 1260
container_title Environmental science & technology
container_volume 55
creator Hu, Jingjing
Wang, Sen
Yu, Jiaqi
Nie, Wenkai
Sun, Jie
Wang, Shaobin
description Heterogeneous electro-Fenton (HEF) reaction has been considered as a promising process for real effluent treatments. However, the design of effective catalysts for simultaneous H2O2 generation and activation to achieve bifunctional catalysis for O2 toward •OH production remains a challenge. Herein, a core–shell structural Fe-based catalyst (FeNC@C), with Fe3C and FeN nanoparticles encapsulated by porous graphitic layers, was synthesized and employed in a HEF system. The FeNC@C catalyst presented a significant performance in degradation of various chlorophenols at various conditions with an extremely low level of leached iron. Electron spin resonance and radical scavenging revealed that •OH was the key reactive species and FeIV would play a role at neutral conditions. Experimental and density function theory calculation revealed the dominated role of Fe3C in H2O2 generation and the positive effect of FeNx sites on H2O2 activation to form •OH. Meanwhile, FeNC@C was proved to be less pH dependence, high stability, and well-recycled materials for practical application in wastewater purification.
doi_str_mv 10.1021/acs.est.0c06825
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2483009323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483009323</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-897fd9799aa6166a008c2fbc90fd4d375abe582c8d41d5cafab70bef772d6313</originalsourceid><addsrcrecordid>eNotUE1LAzEUzEHBWj17DXje-pLsZjfHUvshFCtY0Ft5m7zgljZbs6n15G93_TjNDDPMwDB2I2AkQIo7tN2IujQCC7qSxRkbAAiVGaVfL9hl120BQCqoBuzr_kiJz0hNOAbXk8dP_twk6rhvI1_IleRzChQxNW34jYxtaj7-ZGpPGB2fhjcMlnqyI5tim80opN5-otiX7H883gT-gl2iEyaKfB0J075PXbFzj7uOrv9xyNaz6XqyyJar-cNkvMwOItcpq0zpnSmNQdRCawSorPS1NeBd7lRZYE1FJW3lcuEKix7rEmryZSmdVkIN2e1f7SG278f-mc22PcbQL25kXikAo6RS3z8eYD8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483009323</pqid></control><display><type>article</type><title>Duet Fe3C and FeNx Sites for H2O2 Generation and Activation toward Enhanced Electro-Fenton Performance in Wastewater Treatment</title><source>ACS Publications</source><creator>Hu, Jingjing ; Wang, Sen ; Yu, Jiaqi ; Nie, Wenkai ; Sun, Jie ; Wang, Shaobin</creator><creatorcontrib>Hu, Jingjing ; Wang, Sen ; Yu, Jiaqi ; Nie, Wenkai ; Sun, Jie ; Wang, Shaobin</creatorcontrib><description>Heterogeneous electro-Fenton (HEF) reaction has been considered as a promising process for real effluent treatments. However, the design of effective catalysts for simultaneous H2O2 generation and activation to achieve bifunctional catalysis for O2 toward •OH production remains a challenge. Herein, a core–shell structural Fe-based catalyst (FeNC@C), with Fe3C and FeN nanoparticles encapsulated by porous graphitic layers, was synthesized and employed in a HEF system. The FeNC@C catalyst presented a significant performance in degradation of various chlorophenols at various conditions with an extremely low level of leached iron. Electron spin resonance and radical scavenging revealed that •OH was the key reactive species and FeIV would play a role at neutral conditions. Experimental and density function theory calculation revealed the dominated role of Fe3C in H2O2 generation and the positive effect of FeNx sites on H2O2 activation to form •OH. Meanwhile, FeNC@C was proved to be less pH dependence, high stability, and well-recycled materials for practical application in wastewater purification.</description><identifier>ISSN: 0013-936X</identifier><identifier>DOI: 10.1021/acs.est.0c06825</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Catalysis ; Catalysts ; Cementite ; Chlorophenol ; Density functional theory ; Electron paramagnetic resonance ; Electron spin ; Electron spin resonance ; Hydrogen peroxide ; Iron carbides ; Low level ; Nanoparticles ; Performance degradation ; Recycled materials ; Scavenging ; Spin resonance ; Wastewater purification ; Wastewater treatment</subject><ispartof>Environmental science &amp; technology, 2021-01, Vol.55 (2), p.1260</ispartof><rights>Copyright American Chemical Society Jan 19, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hu, Jingjing</creatorcontrib><creatorcontrib>Wang, Sen</creatorcontrib><creatorcontrib>Yu, Jiaqi</creatorcontrib><creatorcontrib>Nie, Wenkai</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Wang, Shaobin</creatorcontrib><title>Duet Fe3C and FeNx Sites for H2O2 Generation and Activation toward Enhanced Electro-Fenton Performance in Wastewater Treatment</title><title>Environmental science &amp; technology</title><description>Heterogeneous electro-Fenton (HEF) reaction has been considered as a promising process for real effluent treatments. However, the design of effective catalysts for simultaneous H2O2 generation and activation to achieve bifunctional catalysis for O2 toward •OH production remains a challenge. Herein, a core–shell structural Fe-based catalyst (FeNC@C), with Fe3C and FeN nanoparticles encapsulated by porous graphitic layers, was synthesized and employed in a HEF system. The FeNC@C catalyst presented a significant performance in degradation of various chlorophenols at various conditions with an extremely low level of leached iron. Electron spin resonance and radical scavenging revealed that •OH was the key reactive species and FeIV would play a role at neutral conditions. Experimental and density function theory calculation revealed the dominated role of Fe3C in H2O2 generation and the positive effect of FeNx sites on H2O2 activation to form •OH. Meanwhile, FeNC@C was proved to be less pH dependence, high stability, and well-recycled materials for practical application in wastewater purification.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cementite</subject><subject>Chlorophenol</subject><subject>Density functional theory</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Electron spin resonance</subject><subject>Hydrogen peroxide</subject><subject>Iron carbides</subject><subject>Low level</subject><subject>Nanoparticles</subject><subject>Performance degradation</subject><subject>Recycled materials</subject><subject>Scavenging</subject><subject>Spin resonance</subject><subject>Wastewater purification</subject><subject>Wastewater treatment</subject><issn>0013-936X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotUE1LAzEUzEHBWj17DXje-pLsZjfHUvshFCtY0Ft5m7zgljZbs6n15G93_TjNDDPMwDB2I2AkQIo7tN2IujQCC7qSxRkbAAiVGaVfL9hl120BQCqoBuzr_kiJz0hNOAbXk8dP_twk6rhvI1_IleRzChQxNW34jYxtaj7-ZGpPGB2fhjcMlnqyI5tim80opN5-otiX7H883gT-gl2iEyaKfB0J075PXbFzj7uOrv9xyNaz6XqyyJar-cNkvMwOItcpq0zpnSmNQdRCawSorPS1NeBd7lRZYE1FJW3lcuEKix7rEmryZSmdVkIN2e1f7SG278f-mc22PcbQL25kXikAo6RS3z8eYD8</recordid><startdate>20210119</startdate><enddate>20210119</enddate><creator>Hu, Jingjing</creator><creator>Wang, Sen</creator><creator>Yu, Jiaqi</creator><creator>Nie, Wenkai</creator><creator>Sun, Jie</creator><creator>Wang, Shaobin</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20210119</creationdate><title>Duet Fe3C and FeNx Sites for H2O2 Generation and Activation toward Enhanced Electro-Fenton Performance in Wastewater Treatment</title><author>Hu, Jingjing ; Wang, Sen ; Yu, Jiaqi ; Nie, Wenkai ; Sun, Jie ; Wang, Shaobin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-897fd9799aa6166a008c2fbc90fd4d375abe582c8d41d5cafab70bef772d6313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cementite</topic><topic>Chlorophenol</topic><topic>Density functional theory</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Electron spin resonance</topic><topic>Hydrogen peroxide</topic><topic>Iron carbides</topic><topic>Low level</topic><topic>Nanoparticles</topic><topic>Performance degradation</topic><topic>Recycled materials</topic><topic>Scavenging</topic><topic>Spin resonance</topic><topic>Wastewater purification</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jingjing</creatorcontrib><creatorcontrib>Wang, Sen</creatorcontrib><creatorcontrib>Yu, Jiaqi</creatorcontrib><creatorcontrib>Nie, Wenkai</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Wang, Shaobin</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jingjing</au><au>Wang, Sen</au><au>Yu, Jiaqi</au><au>Nie, Wenkai</au><au>Sun, Jie</au><au>Wang, Shaobin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duet Fe3C and FeNx Sites for H2O2 Generation and Activation toward Enhanced Electro-Fenton Performance in Wastewater Treatment</atitle><jtitle>Environmental science &amp; technology</jtitle><date>2021-01-19</date><risdate>2021</risdate><volume>55</volume><issue>2</issue><spage>1260</spage><pages>1260-</pages><issn>0013-936X</issn><abstract>Heterogeneous electro-Fenton (HEF) reaction has been considered as a promising process for real effluent treatments. However, the design of effective catalysts for simultaneous H2O2 generation and activation to achieve bifunctional catalysis for O2 toward •OH production remains a challenge. Herein, a core–shell structural Fe-based catalyst (FeNC@C), with Fe3C and FeN nanoparticles encapsulated by porous graphitic layers, was synthesized and employed in a HEF system. The FeNC@C catalyst presented a significant performance in degradation of various chlorophenols at various conditions with an extremely low level of leached iron. Electron spin resonance and radical scavenging revealed that •OH was the key reactive species and FeIV would play a role at neutral conditions. Experimental and density function theory calculation revealed the dominated role of Fe3C in H2O2 generation and the positive effect of FeNx sites on H2O2 activation to form •OH. Meanwhile, FeNC@C was proved to be less pH dependence, high stability, and well-recycled materials for practical application in wastewater purification.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.0c06825</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2021-01, Vol.55 (2), p.1260
issn 0013-936X
language eng
recordid cdi_proquest_journals_2483009323
source ACS Publications
subjects Catalysis
Catalysts
Cementite
Chlorophenol
Density functional theory
Electron paramagnetic resonance
Electron spin
Electron spin resonance
Hydrogen peroxide
Iron carbides
Low level
Nanoparticles
Performance degradation
Recycled materials
Scavenging
Spin resonance
Wastewater purification
Wastewater treatment
title Duet Fe3C and FeNx Sites for H2O2 Generation and Activation toward Enhanced Electro-Fenton Performance in Wastewater Treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duet%20Fe3C%20and%20FeNx%20Sites%20for%20H2O2%20Generation%20and%20Activation%20toward%20Enhanced%20Electro-Fenton%20Performance%20in%20Wastewater%20Treatment&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Hu,%20Jingjing&rft.date=2021-01-19&rft.volume=55&rft.issue=2&rft.spage=1260&rft.pages=1260-&rft.issn=0013-936X&rft_id=info:doi/10.1021/acs.est.0c06825&rft_dat=%3Cproquest%3E2483009323%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483009323&rft_id=info:pmid/&rfr_iscdi=true