Experimental recalibration of the Cr-in-clinopyroxene geobarometer: improved precision and reliability above 4.5 GPa
The pressure dependence of the exchange of Cr between clinopyroxene and garnet in peridotite is applicable as a geobarometer for mantle-derived Cr-diopside xenocrysts and xenoliths. The most widely used calibration (Nimis and Taylor Contrib Miner Petrol 139: 541–554, 2000; herein NT00) performs well...
Gespeichert in:
Veröffentlicht in: | Contributions to mineralogy and petrology 2021-02, Vol.176 (2), Article 11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Contributions to mineralogy and petrology |
container_volume | 176 |
creator | Sudholz, Z. J. Yaxley, G. M. Jaques, A. L. Brey, G. P. |
description | The pressure dependence of the exchange of Cr between clinopyroxene and garnet in peridotite is applicable as a geobarometer for mantle-derived Cr-diopside xenocrysts and xenoliths. The most widely used calibration (Nimis and Taylor Contrib Miner Petrol 139: 541–554, 2000; herein NT00) performs well at pressures below 4.5 GPa, but has been shown to consistently underestimate pressures above 4.5 GPa. We have experimentally re-examined this exchange reaction over an extended pressure, temperature, and compositional range using multi-anvil, belt, and piston cylinder apparatuses. Twenty-nine experiments were completed between 3–7 GPa, and 1100–1400 °C in a variety of compositionally complex lherzolitic systems. These experiments are used in conjunction with several published experimental datasets to present a modified calibration of the widely-used NT00 Cr-in-clinopyroxene (Cr-in-cpx) single crystal geobarometer. Our updated calibration calculates
P
(GPa) as a function of
T
(K), CaCr Tschermak activity in clinopyroxene
a
CaCrTs
cpx
, and Cr/(Cr + Al) (Cr#) in clinopyroxene. Rearranging experimental results into a 2
n
polynomial using multiple linear regression found the following expression for pressure:
P
GPa
=
11.03
+
-
T
K
ln
(
a
CaCrTs
cpx
)
×
0.001088
+
1.526
×
ln
Cr
#
cpx
T
K
where
Cr
#
cpx
=
Cr
Cr
+
Al
,
a
CaCrTs
cpx
=
Cr
-
0.81
·
Cr
#
cpx
·
Na
+
K
,
with all mineral components calculated assuming six oxygen anions per formula unit in clinopyroxene.
Temperature (K) may be calculated through a variety of geothermometers, however, we recommend the NT00 single crystal, enstatite-in-clinopyroxene (en-in-cpx) geothermometer. The pressure uncertainty of our updated calibration has been propagated by incorporating all analytical and experimental uncertainties. We have found that pressure estimates below 4 GPa, between 4–6 GPa and above 6 GPa have associated uncertainties of 0.31, 0.35, and 0.41 GPa, respectively. Pressures calculated using our calibration of the Cr-in-cpx geobarometer are in good agreement between 2–7 GPa, and 900–1400 °C with those estimated from widely-used two-phase geobarometers based on the solubility of alumina in orthopyroxene coexisting with garnet. Application of our updated calibration to suites of well-equilibrated garnet lherzolite and garnet pyroxenite xenoliths and xenocrysts from the Diavik-Ekati kimberlite and the Argyle lamproite pipes confirm the accuracy and precision of our modified geobarometer, and show that PT estimates |
doi_str_mv | 10.1007/s00410-020-01768-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2482359224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651340819</galeid><sourcerecordid>A651340819</sourcerecordid><originalsourceid>FETCH-LOGICAL-a491t-59d7951aec2fc6c2a0b4db45b2d9394f7d23fd8ace2a082ae2834bdcb59bcbc3</originalsourceid><addsrcrecordid>eNp9kV9rHCEUxaW00G3aL9Anoc9u1XF2xr6FJU0LgfYh73LVO1vDjE7VlGw-fU23EApLEZHr_Z3jn0PIe8G3gvPhY-FcCc64bFMMu5E9viAboTrJuN4NL8mG89YetNavyZtS7nirR91vSL16WDGHBWOFmWZ0MAeboYYUaZpo_YF0n1mIzM0hpvWY0wNGpAdMFnJasGL-RMOy5vQLPV2bQShPWoi-uc0BbJhDPVKwDaBq29Pr7_CWvJpgLvju73pBbj9f3e6_sJtv11_3lzcMlBaV9doPuheATk5u5yRwq7xVvZVed1pNg5fd5Edw2FqjBJRjp6x3ttfWWdddkA8n23a7n_dYqrlL9zm2E41Uo-x6LaV6pg4wowlxSjWDW0Jx5nLXi07xUehGsTPUof1FhjlFnELb_offnuHb8LgEd1YgTwKXUykZJ7O2WCAfjeDmKWNzyti0jM2fjM1jE3UnUWlwPGB-fuF_VL8B10equw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2482359224</pqid></control><display><type>article</type><title>Experimental recalibration of the Cr-in-clinopyroxene geobarometer: improved precision and reliability above 4.5 GPa</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sudholz, Z. J. ; Yaxley, G. M. ; Jaques, A. L. ; Brey, G. P.</creator><creatorcontrib>Sudholz, Z. J. ; Yaxley, G. M. ; Jaques, A. L. ; Brey, G. P.</creatorcontrib><description>The pressure dependence of the exchange of Cr between clinopyroxene and garnet in peridotite is applicable as a geobarometer for mantle-derived Cr-diopside xenocrysts and xenoliths. The most widely used calibration (Nimis and Taylor Contrib Miner Petrol 139: 541–554, 2000; herein NT00) performs well at pressures below 4.5 GPa, but has been shown to consistently underestimate pressures above 4.5 GPa. We have experimentally re-examined this exchange reaction over an extended pressure, temperature, and compositional range using multi-anvil, belt, and piston cylinder apparatuses. Twenty-nine experiments were completed between 3–7 GPa, and 1100–1400 °C in a variety of compositionally complex lherzolitic systems. These experiments are used in conjunction with several published experimental datasets to present a modified calibration of the widely-used NT00 Cr-in-clinopyroxene (Cr-in-cpx) single crystal geobarometer. Our updated calibration calculates
P
(GPa) as a function of
T
(K), CaCr Tschermak activity in clinopyroxene
a
CaCrTs
cpx
, and Cr/(Cr + Al) (Cr#) in clinopyroxene. Rearranging experimental results into a 2
n
polynomial using multiple linear regression found the following expression for pressure:
P
GPa
=
11.03
+
-
T
K
ln
(
a
CaCrTs
cpx
)
×
0.001088
+
1.526
×
ln
Cr
#
cpx
T
K
where
Cr
#
cpx
=
Cr
Cr
+
Al
,
a
CaCrTs
cpx
=
Cr
-
0.81
·
Cr
#
cpx
·
Na
+
K
,
with all mineral components calculated assuming six oxygen anions per formula unit in clinopyroxene.
Temperature (K) may be calculated through a variety of geothermometers, however, we recommend the NT00 single crystal, enstatite-in-clinopyroxene (en-in-cpx) geothermometer. The pressure uncertainty of our updated calibration has been propagated by incorporating all analytical and experimental uncertainties. We have found that pressure estimates below 4 GPa, between 4–6 GPa and above 6 GPa have associated uncertainties of 0.31, 0.35, and 0.41 GPa, respectively. Pressures calculated using our calibration of the Cr-in-cpx geobarometer are in good agreement between 2–7 GPa, and 900–1400 °C with those estimated from widely-used two-phase geobarometers based on the solubility of alumina in orthopyroxene coexisting with garnet. Application of our updated calibration to suites of well-equilibrated garnet lherzolite and garnet pyroxenite xenoliths and xenocrysts from the Diavik-Ekati kimberlite and the Argyle lamproite pipes confirm the accuracy and precision of our modified geobarometer, and show that PT estimates using our revised geobarometer result in systematically steeper paleogeotherms and higher estimates of the lithosphere‒asthenosphere boundary compared with the original NT00 calibration.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-020-01768-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum compounds ; Aluminum oxide ; Anions ; Asthenosphere ; Biotite ; Calcium magnesium silicates ; Calibration ; Cylinders ; Diopside ; Earth and Environmental Science ; Earth Sciences ; Estimates ; Exchanging ; Garnet ; Gasoline ; Geology ; Geothermometers ; Inclusions ; Kimberlite ; Lithosphere ; Mathematical analysis ; Mineral Resources ; Mineralogy ; Original Paper ; Peridotite ; Petrology ; Polynomials ; Pressure ; Pressure dependence ; Regression analysis ; Rocks, Igneous ; Single crystals ; Temperature ; Uncertainty analysis</subject><ispartof>Contributions to mineralogy and petrology, 2021-02, Vol.176 (2), Article 11</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a491t-59d7951aec2fc6c2a0b4db45b2d9394f7d23fd8ace2a082ae2834bdcb59bcbc3</citedby><cites>FETCH-LOGICAL-a491t-59d7951aec2fc6c2a0b4db45b2d9394f7d23fd8ace2a082ae2834bdcb59bcbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-020-01768-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-020-01768-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sudholz, Z. J.</creatorcontrib><creatorcontrib>Yaxley, G. M.</creatorcontrib><creatorcontrib>Jaques, A. L.</creatorcontrib><creatorcontrib>Brey, G. P.</creatorcontrib><title>Experimental recalibration of the Cr-in-clinopyroxene geobarometer: improved precision and reliability above 4.5 GPa</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>The pressure dependence of the exchange of Cr between clinopyroxene and garnet in peridotite is applicable as a geobarometer for mantle-derived Cr-diopside xenocrysts and xenoliths. The most widely used calibration (Nimis and Taylor Contrib Miner Petrol 139: 541–554, 2000; herein NT00) performs well at pressures below 4.5 GPa, but has been shown to consistently underestimate pressures above 4.5 GPa. We have experimentally re-examined this exchange reaction over an extended pressure, temperature, and compositional range using multi-anvil, belt, and piston cylinder apparatuses. Twenty-nine experiments were completed between 3–7 GPa, and 1100–1400 °C in a variety of compositionally complex lherzolitic systems. These experiments are used in conjunction with several published experimental datasets to present a modified calibration of the widely-used NT00 Cr-in-clinopyroxene (Cr-in-cpx) single crystal geobarometer. Our updated calibration calculates
P
(GPa) as a function of
T
(K), CaCr Tschermak activity in clinopyroxene
a
CaCrTs
cpx
, and Cr/(Cr + Al) (Cr#) in clinopyroxene. Rearranging experimental results into a 2
n
polynomial using multiple linear regression found the following expression for pressure:
P
GPa
=
11.03
+
-
T
K
ln
(
a
CaCrTs
cpx
)
×
0.001088
+
1.526
×
ln
Cr
#
cpx
T
K
where
Cr
#
cpx
=
Cr
Cr
+
Al
,
a
CaCrTs
cpx
=
Cr
-
0.81
·
Cr
#
cpx
·
Na
+
K
,
with all mineral components calculated assuming six oxygen anions per formula unit in clinopyroxene.
Temperature (K) may be calculated through a variety of geothermometers, however, we recommend the NT00 single crystal, enstatite-in-clinopyroxene (en-in-cpx) geothermometer. The pressure uncertainty of our updated calibration has been propagated by incorporating all analytical and experimental uncertainties. We have found that pressure estimates below 4 GPa, between 4–6 GPa and above 6 GPa have associated uncertainties of 0.31, 0.35, and 0.41 GPa, respectively. Pressures calculated using our calibration of the Cr-in-cpx geobarometer are in good agreement between 2–7 GPa, and 900–1400 °C with those estimated from widely-used two-phase geobarometers based on the solubility of alumina in orthopyroxene coexisting with garnet. Application of our updated calibration to suites of well-equilibrated garnet lherzolite and garnet pyroxenite xenoliths and xenocrysts from the Diavik-Ekati kimberlite and the Argyle lamproite pipes confirm the accuracy and precision of our modified geobarometer, and show that PT estimates using our revised geobarometer result in systematically steeper paleogeotherms and higher estimates of the lithosphere‒asthenosphere boundary compared with the original NT00 calibration.</description><subject>Aluminum compounds</subject><subject>Aluminum oxide</subject><subject>Anions</subject><subject>Asthenosphere</subject><subject>Biotite</subject><subject>Calcium magnesium silicates</subject><subject>Calibration</subject><subject>Cylinders</subject><subject>Diopside</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Estimates</subject><subject>Exchanging</subject><subject>Garnet</subject><subject>Gasoline</subject><subject>Geology</subject><subject>Geothermometers</subject><subject>Inclusions</subject><subject>Kimberlite</subject><subject>Lithosphere</subject><subject>Mathematical analysis</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Original Paper</subject><subject>Peridotite</subject><subject>Petrology</subject><subject>Polynomials</subject><subject>Pressure</subject><subject>Pressure dependence</subject><subject>Regression analysis</subject><subject>Rocks, Igneous</subject><subject>Single crystals</subject><subject>Temperature</subject><subject>Uncertainty analysis</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kV9rHCEUxaW00G3aL9Anoc9u1XF2xr6FJU0LgfYh73LVO1vDjE7VlGw-fU23EApLEZHr_Z3jn0PIe8G3gvPhY-FcCc64bFMMu5E9viAboTrJuN4NL8mG89YetNavyZtS7nirR91vSL16WDGHBWOFmWZ0MAeboYYUaZpo_YF0n1mIzM0hpvWY0wNGpAdMFnJasGL-RMOy5vQLPV2bQShPWoi-uc0BbJhDPVKwDaBq29Pr7_CWvJpgLvju73pBbj9f3e6_sJtv11_3lzcMlBaV9doPuheATk5u5yRwq7xVvZVed1pNg5fd5Edw2FqjBJRjp6x3ttfWWdddkA8n23a7n_dYqrlL9zm2E41Uo-x6LaV6pg4wowlxSjWDW0Jx5nLXi07xUehGsTPUof1FhjlFnELb_offnuHb8LgEd1YgTwKXUykZJ7O2WCAfjeDmKWNzyti0jM2fjM1jE3UnUWlwPGB-fuF_VL8B10equw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Sudholz, Z. J.</creator><creator>Yaxley, G. M.</creator><creator>Jaques, A. L.</creator><creator>Brey, G. P.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope></search><sort><creationdate>20210201</creationdate><title>Experimental recalibration of the Cr-in-clinopyroxene geobarometer: improved precision and reliability above 4.5 GPa</title><author>Sudholz, Z. J. ; Yaxley, G. M. ; Jaques, A. L. ; Brey, G. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a491t-59d7951aec2fc6c2a0b4db45b2d9394f7d23fd8ace2a082ae2834bdcb59bcbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum compounds</topic><topic>Aluminum oxide</topic><topic>Anions</topic><topic>Asthenosphere</topic><topic>Biotite</topic><topic>Calcium magnesium silicates</topic><topic>Calibration</topic><topic>Cylinders</topic><topic>Diopside</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Estimates</topic><topic>Exchanging</topic><topic>Garnet</topic><topic>Gasoline</topic><topic>Geology</topic><topic>Geothermometers</topic><topic>Inclusions</topic><topic>Kimberlite</topic><topic>Lithosphere</topic><topic>Mathematical analysis</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Original Paper</topic><topic>Peridotite</topic><topic>Petrology</topic><topic>Polynomials</topic><topic>Pressure</topic><topic>Pressure dependence</topic><topic>Regression analysis</topic><topic>Rocks, Igneous</topic><topic>Single crystals</topic><topic>Temperature</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudholz, Z. J.</creatorcontrib><creatorcontrib>Yaxley, G. M.</creatorcontrib><creatorcontrib>Jaques, A. L.</creatorcontrib><creatorcontrib>Brey, G. P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudholz, Z. J.</au><au>Yaxley, G. M.</au><au>Jaques, A. L.</au><au>Brey, G. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental recalibration of the Cr-in-clinopyroxene geobarometer: improved precision and reliability above 4.5 GPa</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>176</volume><issue>2</issue><artnum>11</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><abstract>The pressure dependence of the exchange of Cr between clinopyroxene and garnet in peridotite is applicable as a geobarometer for mantle-derived Cr-diopside xenocrysts and xenoliths. The most widely used calibration (Nimis and Taylor Contrib Miner Petrol 139: 541–554, 2000; herein NT00) performs well at pressures below 4.5 GPa, but has been shown to consistently underestimate pressures above 4.5 GPa. We have experimentally re-examined this exchange reaction over an extended pressure, temperature, and compositional range using multi-anvil, belt, and piston cylinder apparatuses. Twenty-nine experiments were completed between 3–7 GPa, and 1100–1400 °C in a variety of compositionally complex lherzolitic systems. These experiments are used in conjunction with several published experimental datasets to present a modified calibration of the widely-used NT00 Cr-in-clinopyroxene (Cr-in-cpx) single crystal geobarometer. Our updated calibration calculates
P
(GPa) as a function of
T
(K), CaCr Tschermak activity in clinopyroxene
a
CaCrTs
cpx
, and Cr/(Cr + Al) (Cr#) in clinopyroxene. Rearranging experimental results into a 2
n
polynomial using multiple linear regression found the following expression for pressure:
P
GPa
=
11.03
+
-
T
K
ln
(
a
CaCrTs
cpx
)
×
0.001088
+
1.526
×
ln
Cr
#
cpx
T
K
where
Cr
#
cpx
=
Cr
Cr
+
Al
,
a
CaCrTs
cpx
=
Cr
-
0.81
·
Cr
#
cpx
·
Na
+
K
,
with all mineral components calculated assuming six oxygen anions per formula unit in clinopyroxene.
Temperature (K) may be calculated through a variety of geothermometers, however, we recommend the NT00 single crystal, enstatite-in-clinopyroxene (en-in-cpx) geothermometer. The pressure uncertainty of our updated calibration has been propagated by incorporating all analytical and experimental uncertainties. We have found that pressure estimates below 4 GPa, between 4–6 GPa and above 6 GPa have associated uncertainties of 0.31, 0.35, and 0.41 GPa, respectively. Pressures calculated using our calibration of the Cr-in-cpx geobarometer are in good agreement between 2–7 GPa, and 900–1400 °C with those estimated from widely-used two-phase geobarometers based on the solubility of alumina in orthopyroxene coexisting with garnet. Application of our updated calibration to suites of well-equilibrated garnet lherzolite and garnet pyroxenite xenoliths and xenocrysts from the Diavik-Ekati kimberlite and the Argyle lamproite pipes confirm the accuracy and precision of our modified geobarometer, and show that PT estimates using our revised geobarometer result in systematically steeper paleogeotherms and higher estimates of the lithosphere‒asthenosphere boundary compared with the original NT00 calibration.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00410-020-01768-z</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-7999 |
ispartof | Contributions to mineralogy and petrology, 2021-02, Vol.176 (2), Article 11 |
issn | 0010-7999 1432-0967 |
language | eng |
recordid | cdi_proquest_journals_2482359224 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminum compounds Aluminum oxide Anions Asthenosphere Biotite Calcium magnesium silicates Calibration Cylinders Diopside Earth and Environmental Science Earth Sciences Estimates Exchanging Garnet Gasoline Geology Geothermometers Inclusions Kimberlite Lithosphere Mathematical analysis Mineral Resources Mineralogy Original Paper Peridotite Petrology Polynomials Pressure Pressure dependence Regression analysis Rocks, Igneous Single crystals Temperature Uncertainty analysis |
title | Experimental recalibration of the Cr-in-clinopyroxene geobarometer: improved precision and reliability above 4.5 GPa |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20recalibration%20of%20the%20Cr-in-clinopyroxene%20geobarometer:%20improved%20precision%20and%20reliability%20above%204.5%20GPa&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Sudholz,%20Z.%20J.&rft.date=2021-02-01&rft.volume=176&rft.issue=2&rft.artnum=11&rft.issn=0010-7999&rft.eissn=1432-0967&rft_id=info:doi/10.1007/s00410-020-01768-z&rft_dat=%3Cgale_proqu%3EA651340819%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2482359224&rft_id=info:pmid/&rft_galeid=A651340819&rfr_iscdi=true |