Sampling-based inference of the primordial CMB and gravitational lensing

The search for primordial gravitational waves in the cosmic microwave background (CMB) will soon be limited by our ability to remove the lensing contamination to B-mode polarization. The often-used quadratic estimator for lensing is known to be suboptimal for surveys that are currently operating and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys.Rev.D 2020-12, Vol.102 (12), Article 123542
Hauptverfasser: Millea, Marius, Anderes, Ethan, Wandelt, Benjamin D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Phys.Rev.D
container_volume 102
creator Millea, Marius
Anderes, Ethan
Wandelt, Benjamin D.
description The search for primordial gravitational waves in the cosmic microwave background (CMB) will soon be limited by our ability to remove the lensing contamination to B-mode polarization. The often-used quadratic estimator for lensing is known to be suboptimal for surveys that are currently operating and will continue to become less and less efficient as instrumental noise decreases. While foregrounds can, in principle, be mitigated by observing in more frequency bands, progress in delensing hinges entirely on algorithmic advances. We demonstrate here a new inference method that solves this problem by sampling the exact Bayesian posterior of any desired cosmological parameters, of the gravitational lensing potential, and of the delensed CMB maps, given lensed temperature and polarization data. We validate the method using simulated CMB data with nonwhite noise and masking on up to 650 deg(2) patches of sky. A unique strength of this approach is the ability to perform joint inference of cosmological parameters, which control both the primordial CMB and the lensing potential, which we demonstrate here for the first time by sampling both the tensor-to-scalar ratio, r, and the amplitude of the lensing potential, A phi. The method allows us to perform the most precise check to-date of several important approximations underlying CMB-S4 r forecasting, and we confirm these yield the correct expected uncertainty on r to better than 10%.
doi_str_mv 10.1103/PhysRevD.102.123542
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2481922643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481922643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-48fd18a434da72e36f8667f2c49437911154252336324fb8e2234342826049e03</originalsourceid><addsrcrecordid>eNqNkN1LwzAUxYMoOOb-Al8KPol03txkbfo468eEieLHc8jaZOvompl0k_33ZnTu2ad7OPzO5XAIuaQwpBTY7dti59_19n5IAYcU2YjjCekhTyEGwOz0qCmck4H3SwgygSyltEcmH2q1rqtmHs-U12VUNUY73RQ6siZqFzpau2plXVmpOspf7iLVlNHcqW3VqrayTXBr3fiQvyBnRtVeDw63T74eHz7zSTx9fXrOx9O4YGnaxlyYkgrFGS9VipolRiRJarDgGWdpRikN9UfIWMKQm5nQiCzAKDABnmlgfXLd_V2oWu7LKbeTVlVyMp7KvQfIM8oYbGlgrzp27ez3RvtWLu3GhdJeIhc0Q0w4CxTrqMJZ7502x7cU5H5h-bdwMFB2C4fUTZf60TNrfFHtRzsmw8QJoBiBCArSQIv_0_lh3Nxumpb9Aqh2jRU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481922643</pqid></control><display><type>article</type><title>Sampling-based inference of the primordial CMB and gravitational lensing</title><source>American Physical Society Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Millea, Marius ; Anderes, Ethan ; Wandelt, Benjamin D.</creator><creatorcontrib>Millea, Marius ; Anderes, Ethan ; Wandelt, Benjamin D.</creatorcontrib><description>The search for primordial gravitational waves in the cosmic microwave background (CMB) will soon be limited by our ability to remove the lensing contamination to B-mode polarization. The often-used quadratic estimator for lensing is known to be suboptimal for surveys that are currently operating and will continue to become less and less efficient as instrumental noise decreases. While foregrounds can, in principle, be mitigated by observing in more frequency bands, progress in delensing hinges entirely on algorithmic advances. We demonstrate here a new inference method that solves this problem by sampling the exact Bayesian posterior of any desired cosmological parameters, of the gravitational lensing potential, and of the delensed CMB maps, given lensed temperature and polarization data. We validate the method using simulated CMB data with nonwhite noise and masking on up to 650 deg(2) patches of sky. A unique strength of this approach is the ability to perform joint inference of cosmological parameters, which control both the primordial CMB and the lensing potential, which we demonstrate here for the first time by sampling both the tensor-to-scalar ratio, r, and the amplitude of the lensing potential, A phi. The method allows us to perform the most precise check to-date of several important approximations underlying CMB-S4 r forecasting, and we confirm these yield the correct expected uncertainty on r to better than 10%.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.102.123542</identifier><language>eng</language><publisher>COLLEGE PK: Amer Physical Soc</publisher><subject>Astronomy &amp; Astrophysics ; Astrophysics ; Big Bang theory ; Cosmic microwave background ; Frequencies ; Gravitation ; Gravitational lenses ; Gravitational waves ; Inference ; Parameters ; Physical Sciences ; Physics ; Physics, Particles &amp; Fields ; Polarization ; Sampling ; Science &amp; Technology ; Tensors</subject><ispartof>Phys.Rev.D, 2020-12, Vol.102 (12), Article 123542</ispartof><rights>Copyright American Physical Society Dec 15, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>32</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000602850800007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c377t-48fd18a434da72e36f8667f2c49437911154252336324fb8e2234342826049e03</citedby><cites>FETCH-LOGICAL-c377t-48fd18a434da72e36f8667f2c49437911154252336324fb8e2234342826049e03</cites><orcidid>0000-0001-7317-0551 ; 0000-0002-5854-8269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,2877,2878,27929,27930,28253</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02491330$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Millea, Marius</creatorcontrib><creatorcontrib>Anderes, Ethan</creatorcontrib><creatorcontrib>Wandelt, Benjamin D.</creatorcontrib><title>Sampling-based inference of the primordial CMB and gravitational lensing</title><title>Phys.Rev.D</title><addtitle>PHYS REV D</addtitle><description>The search for primordial gravitational waves in the cosmic microwave background (CMB) will soon be limited by our ability to remove the lensing contamination to B-mode polarization. The often-used quadratic estimator for lensing is known to be suboptimal for surveys that are currently operating and will continue to become less and less efficient as instrumental noise decreases. While foregrounds can, in principle, be mitigated by observing in more frequency bands, progress in delensing hinges entirely on algorithmic advances. We demonstrate here a new inference method that solves this problem by sampling the exact Bayesian posterior of any desired cosmological parameters, of the gravitational lensing potential, and of the delensed CMB maps, given lensed temperature and polarization data. We validate the method using simulated CMB data with nonwhite noise and masking on up to 650 deg(2) patches of sky. A unique strength of this approach is the ability to perform joint inference of cosmological parameters, which control both the primordial CMB and the lensing potential, which we demonstrate here for the first time by sampling both the tensor-to-scalar ratio, r, and the amplitude of the lensing potential, A phi. The method allows us to perform the most precise check to-date of several important approximations underlying CMB-S4 r forecasting, and we confirm these yield the correct expected uncertainty on r to better than 10%.</description><subject>Astronomy &amp; Astrophysics</subject><subject>Astrophysics</subject><subject>Big Bang theory</subject><subject>Cosmic microwave background</subject><subject>Frequencies</subject><subject>Gravitation</subject><subject>Gravitational lenses</subject><subject>Gravitational waves</subject><subject>Inference</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Particles &amp; Fields</subject><subject>Polarization</subject><subject>Sampling</subject><subject>Science &amp; Technology</subject><subject>Tensors</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkN1LwzAUxYMoOOb-Al8KPol03txkbfo468eEieLHc8jaZOvompl0k_33ZnTu2ad7OPzO5XAIuaQwpBTY7dti59_19n5IAYcU2YjjCekhTyEGwOz0qCmck4H3SwgygSyltEcmH2q1rqtmHs-U12VUNUY73RQ6siZqFzpau2plXVmpOspf7iLVlNHcqW3VqrayTXBr3fiQvyBnRtVeDw63T74eHz7zSTx9fXrOx9O4YGnaxlyYkgrFGS9VipolRiRJarDgGWdpRikN9UfIWMKQm5nQiCzAKDABnmlgfXLd_V2oWu7LKbeTVlVyMp7KvQfIM8oYbGlgrzp27ez3RvtWLu3GhdJeIhc0Q0w4CxTrqMJZ7502x7cU5H5h-bdwMFB2C4fUTZf60TNrfFHtRzsmw8QJoBiBCArSQIv_0_lh3Nxumpb9Aqh2jRU</recordid><startdate>20201228</startdate><enddate>20201228</enddate><creator>Millea, Marius</creator><creator>Anderes, Ethan</creator><creator>Wandelt, Benjamin D.</creator><general>Amer Physical Soc</general><general>American Physical Society</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7317-0551</orcidid><orcidid>https://orcid.org/0000-0002-5854-8269</orcidid></search><sort><creationdate>20201228</creationdate><title>Sampling-based inference of the primordial CMB and gravitational lensing</title><author>Millea, Marius ; Anderes, Ethan ; Wandelt, Benjamin D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-48fd18a434da72e36f8667f2c49437911154252336324fb8e2234342826049e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomy &amp; Astrophysics</topic><topic>Astrophysics</topic><topic>Big Bang theory</topic><topic>Cosmic microwave background</topic><topic>Frequencies</topic><topic>Gravitation</topic><topic>Gravitational lenses</topic><topic>Gravitational waves</topic><topic>Inference</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Particles &amp; Fields</topic><topic>Polarization</topic><topic>Sampling</topic><topic>Science &amp; Technology</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Millea, Marius</creatorcontrib><creatorcontrib>Anderes, Ethan</creatorcontrib><creatorcontrib>Wandelt, Benjamin D.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Phys.Rev.D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Millea, Marius</au><au>Anderes, Ethan</au><au>Wandelt, Benjamin D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sampling-based inference of the primordial CMB and gravitational lensing</atitle><jtitle>Phys.Rev.D</jtitle><stitle>PHYS REV D</stitle><date>2020-12-28</date><risdate>2020</risdate><volume>102</volume><issue>12</issue><artnum>123542</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>The search for primordial gravitational waves in the cosmic microwave background (CMB) will soon be limited by our ability to remove the lensing contamination to B-mode polarization. The often-used quadratic estimator for lensing is known to be suboptimal for surveys that are currently operating and will continue to become less and less efficient as instrumental noise decreases. While foregrounds can, in principle, be mitigated by observing in more frequency bands, progress in delensing hinges entirely on algorithmic advances. We demonstrate here a new inference method that solves this problem by sampling the exact Bayesian posterior of any desired cosmological parameters, of the gravitational lensing potential, and of the delensed CMB maps, given lensed temperature and polarization data. We validate the method using simulated CMB data with nonwhite noise and masking on up to 650 deg(2) patches of sky. A unique strength of this approach is the ability to perform joint inference of cosmological parameters, which control both the primordial CMB and the lensing potential, which we demonstrate here for the first time by sampling both the tensor-to-scalar ratio, r, and the amplitude of the lensing potential, A phi. The method allows us to perform the most precise check to-date of several important approximations underlying CMB-S4 r forecasting, and we confirm these yield the correct expected uncertainty on r to better than 10%.</abstract><cop>COLLEGE PK</cop><pub>Amer Physical Soc</pub><doi>10.1103/PhysRevD.102.123542</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7317-0551</orcidid><orcidid>https://orcid.org/0000-0002-5854-8269</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Phys.Rev.D, 2020-12, Vol.102 (12), Article 123542
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2481922643
source American Physical Society Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Astronomy & Astrophysics
Astrophysics
Big Bang theory
Cosmic microwave background
Frequencies
Gravitation
Gravitational lenses
Gravitational waves
Inference
Parameters
Physical Sciences
Physics
Physics, Particles & Fields
Polarization
Sampling
Science & Technology
Tensors
title Sampling-based inference of the primordial CMB and gravitational lensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sampling-based%20inference%20of%20the%20primordial%20CMB%20and%20gravitational%20lensing&rft.jtitle=Phys.Rev.D&rft.au=Millea,%20Marius&rft.date=2020-12-28&rft.volume=102&rft.issue=12&rft.artnum=123542&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.102.123542&rft_dat=%3Cproquest_cross%3E2481922643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481922643&rft_id=info:pmid/&rfr_iscdi=true