Numerical computations of next-to-leading order corrections in spinfoam largej asymptotics

We numerically study the next-to-leading order corrections of the Lorentzian Engle-Pereira-Rovelli-Livine (EPRL) 4-simplex amplitude in the large-j expansions. We perform large-j expansions of Lorentzian EPRL 4-simplex amplitudes with two different types of boundary states, the coherent intertwiners...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-12, Vol.102 (12)
Hauptverfasser: Han, Muxin, Huang, Zichang, Liu, Hongguang, Qu, Dongxue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We numerically study the next-to-leading order corrections of the Lorentzian Engle-Pereira-Rovelli-Livine (EPRL) 4-simplex amplitude in the large-j expansions. We perform large-j expansions of Lorentzian EPRL 4-simplex amplitudes with two different types of boundary states, the coherent intertwiners and the coherent spin-network, and numerically compute the leading-order and the next-to-leading order O(1 / j) contributions of these amplitudes. We also study the dependences of these O(1 / j) corrections on the Barbero-Immirzi parameter γ . We show that they, as functions of γ, stabilize to finite real constants as γ →∞ . Lastly, we obtain the quantum corrections to the Regge action because of the O(1 / j) contribution to the spinfoam amplitude.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.102.124010