Numerical computations of next-to-leading order corrections in spinfoam largej asymptotics
We numerically study the next-to-leading order corrections of the Lorentzian Engle-Pereira-Rovelli-Livine (EPRL) 4-simplex amplitude in the large-j expansions. We perform large-j expansions of Lorentzian EPRL 4-simplex amplitudes with two different types of boundary states, the coherent intertwiners...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2020-12, Vol.102 (12) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We numerically study the next-to-leading order corrections of the Lorentzian Engle-Pereira-Rovelli-Livine (EPRL) 4-simplex amplitude in the large-j expansions. We perform large-j expansions of Lorentzian EPRL 4-simplex amplitudes with two different types of boundary states, the coherent intertwiners and the coherent spin-network, and numerically compute the leading-order and the next-to-leading order O(1 / j) contributions of these amplitudes. We also study the dependences of these O(1 / j) corrections on the Barbero-Immirzi parameter γ . We show that they, as functions of γ, stabilize to finite real constants as γ →∞ . Lastly, we obtain the quantum corrections to the Regge action because of the O(1 / j) contribution to the spinfoam amplitude. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.102.124010 |