New rotating black holes in nonlinear Maxwell f ( R ) gravity
We investigate static and rotating charged spherically symmetric solutions in the framework of f(R) gravity, allowing additionally the electromagnetic sector to depart from linearity. Applying a convenient, dual description for the electromagnetic Lagrangian, and using as an example the square-root...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2020-12, Vol.102 (12), Article 124072 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Physical review. D |
container_volume | 102 |
creator | Nashed, G. G. L. Saridakis, Emmanuel N. |
description | We investigate static and rotating charged spherically symmetric solutions in the framework of f(R) gravity, allowing additionally the electromagnetic sector to depart from linearity. Applying a convenient, dual description for the electromagnetic Lagrangian, and using as an example the square-root f(R) correction, we solve analytically the involved field equations. The obtained solutions belong to two branches, one that contains the Kerr-Newman solution of general relativity as a particular limit, and one that arises purely from the gravitational modification with no general relativity limit. The novel black hole solution has a true central singularity which is hidden behind a horizon; however, for particular parameter regions the horizon disappears and the singularity becomes a naked one. Furthermore, we investigate the thermodynamical properties of the solutions, such as the temperature, energy, entropy, heat capacity, and Gibbs free energy. We extract the entropy and quasilocal energy positivity conditions, we show that negative-temperature, ultracold, black holes are possible, and we show that the obtained solutions are thermodynamically stable for suitable model parameter regions. |
doi_str_mv | 10.1103/PhysRevD.102.124072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2481920520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481920520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-67ee19745b1182468d28c39a295ee96feeba94a18549d69562f4fb33100102f3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EElXpL-BiiQscUrxrJ44PHFB5SuWhqvfISddtSkiKnbb035OqwGlHq9HM6GPsHMQQQMjr98UuTGhzNwSBQ0AlNB6xHiotIiHQHP9rEKdsEMJSdDIRRgP02M0rbblvWtuW9ZznlS0--KKpKPCy5nVTV2VN1vMX-72lquKOX_IJv-JzbzdluztjJ85WgQa_t8-mD_fT0VM0fnt8Ht2OowK1bqNEE4HRKs4BUlRJOsO0kMaiiYlM4ohya5SFNFZmlpg4QadcLiXsN6OTfXZxiF355mtNoc2WzdrXXWOGKgWDIkbRueTBVfgmBE8uW_ny0_pdBiLbk8r-SHUPzA6k5A9upVqW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481920520</pqid></control><display><type>article</type><title>New rotating black holes in nonlinear Maxwell f ( R ) gravity</title><source>American Physical Society Journals</source><creator>Nashed, G. G. L. ; Saridakis, Emmanuel N.</creator><creatorcontrib>Nashed, G. G. L. ; Saridakis, Emmanuel N.</creatorcontrib><description>We investigate static and rotating charged spherically symmetric solutions in the framework of f(R) gravity, allowing additionally the electromagnetic sector to depart from linearity. Applying a convenient, dual description for the electromagnetic Lagrangian, and using as an example the square-root f(R) correction, we solve analytically the involved field equations. The obtained solutions belong to two branches, one that contains the Kerr-Newman solution of general relativity as a particular limit, and one that arises purely from the gravitational modification with no general relativity limit. The novel black hole solution has a true central singularity which is hidden behind a horizon; however, for particular parameter regions the horizon disappears and the singularity becomes a naked one. Furthermore, we investigate the thermodynamical properties of the solutions, such as the temperature, energy, entropy, heat capacity, and Gibbs free energy. We extract the entropy and quasilocal energy positivity conditions, we show that negative-temperature, ultracold, black holes are possible, and we show that the obtained solutions are thermodynamically stable for suitable model parameter regions.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.102.124072</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Black holes ; Entropy ; Gibbs free energy ; Gravitation ; Horizon ; Linearity ; Parameters ; Relativity ; Rotating spheres ; Rotation ; Singularities ; Theory of relativity</subject><ispartof>Physical review. D, 2020-12, Vol.102 (12), Article 124072</ispartof><rights>Copyright American Physical Society Dec 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-67ee19745b1182468d28c39a295ee96feeba94a18549d69562f4fb33100102f3</citedby><cites>FETCH-LOGICAL-c277t-67ee19745b1182468d28c39a295ee96feeba94a18549d69562f4fb33100102f3</cites><orcidid>0000-0003-1500-0874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids></links><search><creatorcontrib>Nashed, G. G. L.</creatorcontrib><creatorcontrib>Saridakis, Emmanuel N.</creatorcontrib><title>New rotating black holes in nonlinear Maxwell f ( R ) gravity</title><title>Physical review. D</title><description>We investigate static and rotating charged spherically symmetric solutions in the framework of f(R) gravity, allowing additionally the electromagnetic sector to depart from linearity. Applying a convenient, dual description for the electromagnetic Lagrangian, and using as an example the square-root f(R) correction, we solve analytically the involved field equations. The obtained solutions belong to two branches, one that contains the Kerr-Newman solution of general relativity as a particular limit, and one that arises purely from the gravitational modification with no general relativity limit. The novel black hole solution has a true central singularity which is hidden behind a horizon; however, for particular parameter regions the horizon disappears and the singularity becomes a naked one. Furthermore, we investigate the thermodynamical properties of the solutions, such as the temperature, energy, entropy, heat capacity, and Gibbs free energy. We extract the entropy and quasilocal energy positivity conditions, we show that negative-temperature, ultracold, black holes are possible, and we show that the obtained solutions are thermodynamically stable for suitable model parameter regions.</description><subject>Black holes</subject><subject>Entropy</subject><subject>Gibbs free energy</subject><subject>Gravitation</subject><subject>Horizon</subject><subject>Linearity</subject><subject>Parameters</subject><subject>Relativity</subject><subject>Rotating spheres</subject><subject>Rotation</subject><subject>Singularities</subject><subject>Theory of relativity</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EElXpL-BiiQscUrxrJ44PHFB5SuWhqvfISddtSkiKnbb035OqwGlHq9HM6GPsHMQQQMjr98UuTGhzNwSBQ0AlNB6xHiotIiHQHP9rEKdsEMJSdDIRRgP02M0rbblvWtuW9ZznlS0--KKpKPCy5nVTV2VN1vMX-72lquKOX_IJv-JzbzdluztjJ85WgQa_t8-mD_fT0VM0fnt8Ht2OowK1bqNEE4HRKs4BUlRJOsO0kMaiiYlM4ohya5SFNFZmlpg4QadcLiXsN6OTfXZxiF355mtNoc2WzdrXXWOGKgWDIkbRueTBVfgmBE8uW_ny0_pdBiLbk8r-SHUPzA6k5A9upVqW</recordid><startdate>20201229</startdate><enddate>20201229</enddate><creator>Nashed, G. G. L.</creator><creator>Saridakis, Emmanuel N.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1500-0874</orcidid></search><sort><creationdate>20201229</creationdate><title>New rotating black holes in nonlinear Maxwell f ( R ) gravity</title><author>Nashed, G. G. L. ; Saridakis, Emmanuel N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-67ee19745b1182468d28c39a295ee96feeba94a18549d69562f4fb33100102f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Black holes</topic><topic>Entropy</topic><topic>Gibbs free energy</topic><topic>Gravitation</topic><topic>Horizon</topic><topic>Linearity</topic><topic>Parameters</topic><topic>Relativity</topic><topic>Rotating spheres</topic><topic>Rotation</topic><topic>Singularities</topic><topic>Theory of relativity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nashed, G. G. L.</creatorcontrib><creatorcontrib>Saridakis, Emmanuel N.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nashed, G. G. L.</au><au>Saridakis, Emmanuel N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New rotating black holes in nonlinear Maxwell f ( R ) gravity</atitle><jtitle>Physical review. D</jtitle><date>2020-12-29</date><risdate>2020</risdate><volume>102</volume><issue>12</issue><artnum>124072</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We investigate static and rotating charged spherically symmetric solutions in the framework of f(R) gravity, allowing additionally the electromagnetic sector to depart from linearity. Applying a convenient, dual description for the electromagnetic Lagrangian, and using as an example the square-root f(R) correction, we solve analytically the involved field equations. The obtained solutions belong to two branches, one that contains the Kerr-Newman solution of general relativity as a particular limit, and one that arises purely from the gravitational modification with no general relativity limit. The novel black hole solution has a true central singularity which is hidden behind a horizon; however, for particular parameter regions the horizon disappears and the singularity becomes a naked one. Furthermore, we investigate the thermodynamical properties of the solutions, such as the temperature, energy, entropy, heat capacity, and Gibbs free energy. We extract the entropy and quasilocal energy positivity conditions, we show that negative-temperature, ultracold, black holes are possible, and we show that the obtained solutions are thermodynamically stable for suitable model parameter regions.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.102.124072</doi><orcidid>https://orcid.org/0000-0003-1500-0874</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2020-12, Vol.102 (12), Article 124072 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2481920520 |
source | American Physical Society Journals |
subjects | Black holes Entropy Gibbs free energy Gravitation Horizon Linearity Parameters Relativity Rotating spheres Rotation Singularities Theory of relativity |
title | New rotating black holes in nonlinear Maxwell f ( R ) gravity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20rotating%20black%20holes%20in%20nonlinear%20Maxwell%20f%20(%20R%20)%20gravity&rft.jtitle=Physical%20review.%20D&rft.au=Nashed,%20G.%E2%80%89G.%E2%80%89L.&rft.date=2020-12-29&rft.volume=102&rft.issue=12&rft.artnum=124072&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.102.124072&rft_dat=%3Cproquest_cross%3E2481920520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481920520&rft_id=info:pmid/&rfr_iscdi=true |