New rotating black holes in nonlinear Maxwell f ( R ) gravity

We investigate static and rotating charged spherically symmetric solutions in the framework of f(R) gravity, allowing additionally the electromagnetic sector to depart from linearity. Applying a convenient, dual description for the electromagnetic Lagrangian, and using as an example the square-root...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-12, Vol.102 (12), Article 124072
Hauptverfasser: Nashed, G. G. L., Saridakis, Emmanuel N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Physical review. D
container_volume 102
creator Nashed, G. G. L.
Saridakis, Emmanuel N.
description We investigate static and rotating charged spherically symmetric solutions in the framework of f(R) gravity, allowing additionally the electromagnetic sector to depart from linearity. Applying a convenient, dual description for the electromagnetic Lagrangian, and using as an example the square-root f(R) correction, we solve analytically the involved field equations. The obtained solutions belong to two branches, one that contains the Kerr-Newman solution of general relativity as a particular limit, and one that arises purely from the gravitational modification with no general relativity limit. The novel black hole solution has a true central singularity which is hidden behind a horizon; however, for particular parameter regions the horizon disappears and the singularity becomes a naked one. Furthermore, we investigate the thermodynamical properties of the solutions, such as the temperature, energy, entropy, heat capacity, and Gibbs free energy. We extract the entropy and quasilocal energy positivity conditions, we show that negative-temperature, ultracold, black holes are possible, and we show that the obtained solutions are thermodynamically stable for suitable model parameter regions.
doi_str_mv 10.1103/PhysRevD.102.124072
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2481920520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481920520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-67ee19745b1182468d28c39a295ee96feeba94a18549d69562f4fb33100102f3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EElXpL-BiiQscUrxrJ44PHFB5SuWhqvfISddtSkiKnbb035OqwGlHq9HM6GPsHMQQQMjr98UuTGhzNwSBQ0AlNB6xHiotIiHQHP9rEKdsEMJSdDIRRgP02M0rbblvWtuW9ZznlS0--KKpKPCy5nVTV2VN1vMX-72lquKOX_IJv-JzbzdluztjJ85WgQa_t8-mD_fT0VM0fnt8Ht2OowK1bqNEE4HRKs4BUlRJOsO0kMaiiYlM4ohya5SFNFZmlpg4QadcLiXsN6OTfXZxiF355mtNoc2WzdrXXWOGKgWDIkbRueTBVfgmBE8uW_ny0_pdBiLbk8r-SHUPzA6k5A9upVqW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481920520</pqid></control><display><type>article</type><title>New rotating black holes in nonlinear Maxwell f ( R ) gravity</title><source>American Physical Society Journals</source><creator>Nashed, G. G. L. ; Saridakis, Emmanuel N.</creator><creatorcontrib>Nashed, G. G. L. ; Saridakis, Emmanuel N.</creatorcontrib><description>We investigate static and rotating charged spherically symmetric solutions in the framework of f(R) gravity, allowing additionally the electromagnetic sector to depart from linearity. Applying a convenient, dual description for the electromagnetic Lagrangian, and using as an example the square-root f(R) correction, we solve analytically the involved field equations. The obtained solutions belong to two branches, one that contains the Kerr-Newman solution of general relativity as a particular limit, and one that arises purely from the gravitational modification with no general relativity limit. The novel black hole solution has a true central singularity which is hidden behind a horizon; however, for particular parameter regions the horizon disappears and the singularity becomes a naked one. Furthermore, we investigate the thermodynamical properties of the solutions, such as the temperature, energy, entropy, heat capacity, and Gibbs free energy. We extract the entropy and quasilocal energy positivity conditions, we show that negative-temperature, ultracold, black holes are possible, and we show that the obtained solutions are thermodynamically stable for suitable model parameter regions.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.102.124072</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Black holes ; Entropy ; Gibbs free energy ; Gravitation ; Horizon ; Linearity ; Parameters ; Relativity ; Rotating spheres ; Rotation ; Singularities ; Theory of relativity</subject><ispartof>Physical review. D, 2020-12, Vol.102 (12), Article 124072</ispartof><rights>Copyright American Physical Society Dec 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-67ee19745b1182468d28c39a295ee96feeba94a18549d69562f4fb33100102f3</citedby><cites>FETCH-LOGICAL-c277t-67ee19745b1182468d28c39a295ee96feeba94a18549d69562f4fb33100102f3</cites><orcidid>0000-0003-1500-0874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids></links><search><creatorcontrib>Nashed, G. G. L.</creatorcontrib><creatorcontrib>Saridakis, Emmanuel N.</creatorcontrib><title>New rotating black holes in nonlinear Maxwell f ( R ) gravity</title><title>Physical review. D</title><description>We investigate static and rotating charged spherically symmetric solutions in the framework of f(R) gravity, allowing additionally the electromagnetic sector to depart from linearity. Applying a convenient, dual description for the electromagnetic Lagrangian, and using as an example the square-root f(R) correction, we solve analytically the involved field equations. The obtained solutions belong to two branches, one that contains the Kerr-Newman solution of general relativity as a particular limit, and one that arises purely from the gravitational modification with no general relativity limit. The novel black hole solution has a true central singularity which is hidden behind a horizon; however, for particular parameter regions the horizon disappears and the singularity becomes a naked one. Furthermore, we investigate the thermodynamical properties of the solutions, such as the temperature, energy, entropy, heat capacity, and Gibbs free energy. We extract the entropy and quasilocal energy positivity conditions, we show that negative-temperature, ultracold, black holes are possible, and we show that the obtained solutions are thermodynamically stable for suitable model parameter regions.</description><subject>Black holes</subject><subject>Entropy</subject><subject>Gibbs free energy</subject><subject>Gravitation</subject><subject>Horizon</subject><subject>Linearity</subject><subject>Parameters</subject><subject>Relativity</subject><subject>Rotating spheres</subject><subject>Rotation</subject><subject>Singularities</subject><subject>Theory of relativity</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EElXpL-BiiQscUrxrJ44PHFB5SuWhqvfISddtSkiKnbb035OqwGlHq9HM6GPsHMQQQMjr98UuTGhzNwSBQ0AlNB6xHiotIiHQHP9rEKdsEMJSdDIRRgP02M0rbblvWtuW9ZznlS0--KKpKPCy5nVTV2VN1vMX-72lquKOX_IJv-JzbzdluztjJ85WgQa_t8-mD_fT0VM0fnt8Ht2OowK1bqNEE4HRKs4BUlRJOsO0kMaiiYlM4ohya5SFNFZmlpg4QadcLiXsN6OTfXZxiF355mtNoc2WzdrXXWOGKgWDIkbRueTBVfgmBE8uW_ny0_pdBiLbk8r-SHUPzA6k5A9upVqW</recordid><startdate>20201229</startdate><enddate>20201229</enddate><creator>Nashed, G. G. L.</creator><creator>Saridakis, Emmanuel N.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1500-0874</orcidid></search><sort><creationdate>20201229</creationdate><title>New rotating black holes in nonlinear Maxwell f ( R ) gravity</title><author>Nashed, G. G. L. ; Saridakis, Emmanuel N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-67ee19745b1182468d28c39a295ee96feeba94a18549d69562f4fb33100102f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Black holes</topic><topic>Entropy</topic><topic>Gibbs free energy</topic><topic>Gravitation</topic><topic>Horizon</topic><topic>Linearity</topic><topic>Parameters</topic><topic>Relativity</topic><topic>Rotating spheres</topic><topic>Rotation</topic><topic>Singularities</topic><topic>Theory of relativity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nashed, G. G. L.</creatorcontrib><creatorcontrib>Saridakis, Emmanuel N.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nashed, G. G. L.</au><au>Saridakis, Emmanuel N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New rotating black holes in nonlinear Maxwell f ( R ) gravity</atitle><jtitle>Physical review. D</jtitle><date>2020-12-29</date><risdate>2020</risdate><volume>102</volume><issue>12</issue><artnum>124072</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We investigate static and rotating charged spherically symmetric solutions in the framework of f(R) gravity, allowing additionally the electromagnetic sector to depart from linearity. Applying a convenient, dual description for the electromagnetic Lagrangian, and using as an example the square-root f(R) correction, we solve analytically the involved field equations. The obtained solutions belong to two branches, one that contains the Kerr-Newman solution of general relativity as a particular limit, and one that arises purely from the gravitational modification with no general relativity limit. The novel black hole solution has a true central singularity which is hidden behind a horizon; however, for particular parameter regions the horizon disappears and the singularity becomes a naked one. Furthermore, we investigate the thermodynamical properties of the solutions, such as the temperature, energy, entropy, heat capacity, and Gibbs free energy. We extract the entropy and quasilocal energy positivity conditions, we show that negative-temperature, ultracold, black holes are possible, and we show that the obtained solutions are thermodynamically stable for suitable model parameter regions.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.102.124072</doi><orcidid>https://orcid.org/0000-0003-1500-0874</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2020-12, Vol.102 (12), Article 124072
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2481920520
source American Physical Society Journals
subjects Black holes
Entropy
Gibbs free energy
Gravitation
Horizon
Linearity
Parameters
Relativity
Rotating spheres
Rotation
Singularities
Theory of relativity
title New rotating black holes in nonlinear Maxwell f ( R ) gravity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20rotating%20black%20holes%20in%20nonlinear%20Maxwell%20f%20(%20R%20)%20gravity&rft.jtitle=Physical%20review.%20D&rft.au=Nashed,%20G.%E2%80%89G.%E2%80%89L.&rft.date=2020-12-29&rft.volume=102&rft.issue=12&rft.artnum=124072&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.102.124072&rft_dat=%3Cproquest_cross%3E2481920520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481920520&rft_id=info:pmid/&rfr_iscdi=true