Constraining the spin parameter of near-extremal black holes using LISA
We describe a model that generates first order adiabatic extreme mass ratio inspiral waveforms for quasicircular equatorial inspirals of compact objects into rapidly rotating (near-extremal) black holes. Using our model, we show that LISA could measure the spin parameter of near-extremal black holes...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2020-12, Vol.102 (12), p.124054-1, Article 124054 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 124054-1 |
container_title | Physical review. D |
container_volume | 102 |
creator | Burke, Ollie Gair, Jonathan R. Simón, Joan Edwards, Matthew C. |
description | We describe a model that generates first order adiabatic extreme mass ratio inspiral waveforms for quasicircular equatorial inspirals of compact objects into rapidly rotating (near-extremal) black holes. Using our model, we show that LISA could measure the spin parameter of near-extremal black holes (for a ≳ 0.9999) with extraordinary precision, ∼3 − 4 orders of magnitude better than for moderate spins, a ∼ 0.9. Such spin measurements would be one of the tightest measurements of an astrophysical parameter within a gravitational wave context. Our results are primarily based off a Fisher matrix analysis, but are verified using both frequentist and Bayesian techniques. We present analytical arguments that explain these high spin precision measurements. The high precision arises from the spin dependence of the radial inspiral evolution, which is dominated by geodesic properties of the secondary orbit, rather than radiation reaction. High precision measurements are only possible if we observe the exponential damping of the signal that is characteristic of the near-horizon regime of near-extremal inspirals. Our results demonstrate that, if such black holes exist, LISA would be able to successfully identify rapidly rotating black holes up to a = 1 − 10−9, far past the Thorne limit of a = 0.998. |
doi_str_mv | 10.1103/PhysRevD.102.124054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2481920491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481920491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-2ab2de11ffea57fded032c8f2f67fbc7444b5cc2a6b71e1a3afad9f9c78ea5463</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOZ-gTcBrztzTrJmvRxTt8FA8eM6pOmJ6-zamnTi_r0dU6_Oy-H9gIexaxBjACFvnzaH-Exfd2MQOAZUYqLO2ACVFokQmJ3_axCXbBTjVvQyFZkGGLDFvKljF2xZl_U77zbEY1vWvLXB7qijwBvPa7Ihoe8u0M5WPK-s--CbpqLI9_GYWq9eZlfswtsq0uj3Dtnbw_3rfJmsHxer-WydOInYJWhzLAjAe7IT7QsqhEQ39ehT7XOnlVL5xDm0aa6BwErrbZH5zOlpH1CpHLKbU28bms89xc5sm32o-0mDagoZCpVB75InlwtNjIG8aUO5s-FgQJgjNPMHrX-gOUGTP0LzYgY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481920491</pqid></control><display><type>article</type><title>Constraining the spin parameter of near-extremal black holes using LISA</title><source>American Physical Society Journals</source><creator>Burke, Ollie ; Gair, Jonathan R. ; Simón, Joan ; Edwards, Matthew C.</creator><creatorcontrib>Burke, Ollie ; Gair, Jonathan R. ; Simón, Joan ; Edwards, Matthew C.</creatorcontrib><description>We describe a model that generates first order adiabatic extreme mass ratio inspiral waveforms for quasicircular equatorial inspirals of compact objects into rapidly rotating (near-extremal) black holes. Using our model, we show that LISA could measure the spin parameter of near-extremal black holes (for a ≳ 0.9999) with extraordinary precision, ∼3 − 4 orders of magnitude better than for moderate spins, a ∼ 0.9. Such spin measurements would be one of the tightest measurements of an astrophysical parameter within a gravitational wave context. Our results are primarily based off a Fisher matrix analysis, but are verified using both frequentist and Bayesian techniques. We present analytical arguments that explain these high spin precision measurements. The high precision arises from the spin dependence of the radial inspiral evolution, which is dominated by geodesic properties of the secondary orbit, rather than radiation reaction. High precision measurements are only possible if we observe the exponential damping of the signal that is characteristic of the near-horizon regime of near-extremal inspirals. Our results demonstrate that, if such black holes exist, LISA would be able to successfully identify rapidly rotating black holes up to a = 1 − 10−9, far past the Thorne limit of a = 0.998.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.102.124054</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Black holes ; Damping ; Gravitational waves ; Mathematical models ; Matrix methods ; Parameters ; Rotation ; Waveforms</subject><ispartof>Physical review. D, 2020-12, Vol.102 (12), p.124054-1, Article 124054</ispartof><rights>Copyright American Physical Society Dec 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-2ab2de11ffea57fded032c8f2f67fbc7444b5cc2a6b71e1a3afad9f9c78ea5463</citedby><cites>FETCH-LOGICAL-c322t-2ab2de11ffea57fded032c8f2f67fbc7444b5cc2a6b71e1a3afad9f9c78ea5463</cites><orcidid>0000-0003-2393-209X ; 0000-0002-7672-9389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Burke, Ollie</creatorcontrib><creatorcontrib>Gair, Jonathan R.</creatorcontrib><creatorcontrib>Simón, Joan</creatorcontrib><creatorcontrib>Edwards, Matthew C.</creatorcontrib><title>Constraining the spin parameter of near-extremal black holes using LISA</title><title>Physical review. D</title><description>We describe a model that generates first order adiabatic extreme mass ratio inspiral waveforms for quasicircular equatorial inspirals of compact objects into rapidly rotating (near-extremal) black holes. Using our model, we show that LISA could measure the spin parameter of near-extremal black holes (for a ≳ 0.9999) with extraordinary precision, ∼3 − 4 orders of magnitude better than for moderate spins, a ∼ 0.9. Such spin measurements would be one of the tightest measurements of an astrophysical parameter within a gravitational wave context. Our results are primarily based off a Fisher matrix analysis, but are verified using both frequentist and Bayesian techniques. We present analytical arguments that explain these high spin precision measurements. The high precision arises from the spin dependence of the radial inspiral evolution, which is dominated by geodesic properties of the secondary orbit, rather than radiation reaction. High precision measurements are only possible if we observe the exponential damping of the signal that is characteristic of the near-horizon regime of near-extremal inspirals. Our results demonstrate that, if such black holes exist, LISA would be able to successfully identify rapidly rotating black holes up to a = 1 − 10−9, far past the Thorne limit of a = 0.998.</description><subject>Black holes</subject><subject>Damping</subject><subject>Gravitational waves</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>Parameters</subject><subject>Rotation</subject><subject>Waveforms</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOOZ-gTcBrztzTrJmvRxTt8FA8eM6pOmJ6-zamnTi_r0dU6_Oy-H9gIexaxBjACFvnzaH-Exfd2MQOAZUYqLO2ACVFokQmJ3_axCXbBTjVvQyFZkGGLDFvKljF2xZl_U77zbEY1vWvLXB7qijwBvPa7Ihoe8u0M5WPK-s--CbpqLI9_GYWq9eZlfswtsq0uj3Dtnbw_3rfJmsHxer-WydOInYJWhzLAjAe7IT7QsqhEQ39ehT7XOnlVL5xDm0aa6BwErrbZH5zOlpH1CpHLKbU28bms89xc5sm32o-0mDagoZCpVB75InlwtNjIG8aUO5s-FgQJgjNPMHrX-gOUGTP0LzYgY</recordid><startdate>20201222</startdate><enddate>20201222</enddate><creator>Burke, Ollie</creator><creator>Gair, Jonathan R.</creator><creator>Simón, Joan</creator><creator>Edwards, Matthew C.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2393-209X</orcidid><orcidid>https://orcid.org/0000-0002-7672-9389</orcidid></search><sort><creationdate>20201222</creationdate><title>Constraining the spin parameter of near-extremal black holes using LISA</title><author>Burke, Ollie ; Gair, Jonathan R. ; Simón, Joan ; Edwards, Matthew C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-2ab2de11ffea57fded032c8f2f67fbc7444b5cc2a6b71e1a3afad9f9c78ea5463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Black holes</topic><topic>Damping</topic><topic>Gravitational waves</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>Parameters</topic><topic>Rotation</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burke, Ollie</creatorcontrib><creatorcontrib>Gair, Jonathan R.</creatorcontrib><creatorcontrib>Simón, Joan</creatorcontrib><creatorcontrib>Edwards, Matthew C.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burke, Ollie</au><au>Gair, Jonathan R.</au><au>Simón, Joan</au><au>Edwards, Matthew C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraining the spin parameter of near-extremal black holes using LISA</atitle><jtitle>Physical review. D</jtitle><date>2020-12-22</date><risdate>2020</risdate><volume>102</volume><issue>12</issue><spage>124054-1</spage><pages>124054-1-</pages><artnum>124054</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We describe a model that generates first order adiabatic extreme mass ratio inspiral waveforms for quasicircular equatorial inspirals of compact objects into rapidly rotating (near-extremal) black holes. Using our model, we show that LISA could measure the spin parameter of near-extremal black holes (for a ≳ 0.9999) with extraordinary precision, ∼3 − 4 orders of magnitude better than for moderate spins, a ∼ 0.9. Such spin measurements would be one of the tightest measurements of an astrophysical parameter within a gravitational wave context. Our results are primarily based off a Fisher matrix analysis, but are verified using both frequentist and Bayesian techniques. We present analytical arguments that explain these high spin precision measurements. The high precision arises from the spin dependence of the radial inspiral evolution, which is dominated by geodesic properties of the secondary orbit, rather than radiation reaction. High precision measurements are only possible if we observe the exponential damping of the signal that is characteristic of the near-horizon regime of near-extremal inspirals. Our results demonstrate that, if such black holes exist, LISA would be able to successfully identify rapidly rotating black holes up to a = 1 − 10−9, far past the Thorne limit of a = 0.998.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.102.124054</doi><orcidid>https://orcid.org/0000-0003-2393-209X</orcidid><orcidid>https://orcid.org/0000-0002-7672-9389</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2020-12, Vol.102 (12), p.124054-1, Article 124054 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2481920491 |
source | American Physical Society Journals |
subjects | Black holes Damping Gravitational waves Mathematical models Matrix methods Parameters Rotation Waveforms |
title | Constraining the spin parameter of near-extremal black holes using LISA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraining%20the%20spin%20parameter%20of%20near-extremal%20black%20holes%20using%20LISA&rft.jtitle=Physical%20review.%20D&rft.au=Burke,%20Ollie&rft.date=2020-12-22&rft.volume=102&rft.issue=12&rft.spage=124054-1&rft.pages=124054-1-&rft.artnum=124054&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.102.124054&rft_dat=%3Cproquest_cross%3E2481920491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481920491&rft_id=info:pmid/&rfr_iscdi=true |