Constraining the spin parameter of near-extremal black holes using LISA

We describe a model that generates first order adiabatic extreme mass ratio inspiral waveforms for quasicircular equatorial inspirals of compact objects into rapidly rotating (near-extremal) black holes. Using our model, we show that LISA could measure the spin parameter of near-extremal black holes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-12, Vol.102 (12), p.124054-1, Article 124054
Hauptverfasser: Burke, Ollie, Gair, Jonathan R., Simón, Joan, Edwards, Matthew C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 124054-1
container_title Physical review. D
container_volume 102
creator Burke, Ollie
Gair, Jonathan R.
Simón, Joan
Edwards, Matthew C.
description We describe a model that generates first order adiabatic extreme mass ratio inspiral waveforms for quasicircular equatorial inspirals of compact objects into rapidly rotating (near-extremal) black holes. Using our model, we show that LISA could measure the spin parameter of near-extremal black holes (for a ≳ 0.9999) with extraordinary precision, ∼3 − 4 orders of magnitude better than for moderate spins, a ∼ 0.9. Such spin measurements would be one of the tightest measurements of an astrophysical parameter within a gravitational wave context. Our results are primarily based off a Fisher matrix analysis, but are verified using both frequentist and Bayesian techniques. We present analytical arguments that explain these high spin precision measurements. The high precision arises from the spin dependence of the radial inspiral evolution, which is dominated by geodesic properties of the secondary orbit, rather than radiation reaction. High precision measurements are only possible if we observe the exponential damping of the signal that is characteristic of the near-horizon regime of near-extremal inspirals. Our results demonstrate that, if such black holes exist, LISA would be able to successfully identify rapidly rotating black holes up to a = 1 − 10−9, far past the Thorne limit of a = 0.998.
doi_str_mv 10.1103/PhysRevD.102.124054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2481920491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481920491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-2ab2de11ffea57fded032c8f2f67fbc7444b5cc2a6b71e1a3afad9f9c78ea5463</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOZ-gTcBrztzTrJmvRxTt8FA8eM6pOmJ6-zamnTi_r0dU6_Oy-H9gIexaxBjACFvnzaH-Exfd2MQOAZUYqLO2ACVFokQmJ3_axCXbBTjVvQyFZkGGLDFvKljF2xZl_U77zbEY1vWvLXB7qijwBvPa7Ihoe8u0M5WPK-s--CbpqLI9_GYWq9eZlfswtsq0uj3Dtnbw_3rfJmsHxer-WydOInYJWhzLAjAe7IT7QsqhEQ39ehT7XOnlVL5xDm0aa6BwErrbZH5zOlpH1CpHLKbU28bms89xc5sm32o-0mDagoZCpVB75InlwtNjIG8aUO5s-FgQJgjNPMHrX-gOUGTP0LzYgY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481920491</pqid></control><display><type>article</type><title>Constraining the spin parameter of near-extremal black holes using LISA</title><source>American Physical Society Journals</source><creator>Burke, Ollie ; Gair, Jonathan R. ; Simón, Joan ; Edwards, Matthew C.</creator><creatorcontrib>Burke, Ollie ; Gair, Jonathan R. ; Simón, Joan ; Edwards, Matthew C.</creatorcontrib><description>We describe a model that generates first order adiabatic extreme mass ratio inspiral waveforms for quasicircular equatorial inspirals of compact objects into rapidly rotating (near-extremal) black holes. Using our model, we show that LISA could measure the spin parameter of near-extremal black holes (for a ≳ 0.9999) with extraordinary precision, ∼3 − 4 orders of magnitude better than for moderate spins, a ∼ 0.9. Such spin measurements would be one of the tightest measurements of an astrophysical parameter within a gravitational wave context. Our results are primarily based off a Fisher matrix analysis, but are verified using both frequentist and Bayesian techniques. We present analytical arguments that explain these high spin precision measurements. The high precision arises from the spin dependence of the radial inspiral evolution, which is dominated by geodesic properties of the secondary orbit, rather than radiation reaction. High precision measurements are only possible if we observe the exponential damping of the signal that is characteristic of the near-horizon regime of near-extremal inspirals. Our results demonstrate that, if such black holes exist, LISA would be able to successfully identify rapidly rotating black holes up to a = 1 − 10−9, far past the Thorne limit of a = 0.998.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.102.124054</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Black holes ; Damping ; Gravitational waves ; Mathematical models ; Matrix methods ; Parameters ; Rotation ; Waveforms</subject><ispartof>Physical review. D, 2020-12, Vol.102 (12), p.124054-1, Article 124054</ispartof><rights>Copyright American Physical Society Dec 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-2ab2de11ffea57fded032c8f2f67fbc7444b5cc2a6b71e1a3afad9f9c78ea5463</citedby><cites>FETCH-LOGICAL-c322t-2ab2de11ffea57fded032c8f2f67fbc7444b5cc2a6b71e1a3afad9f9c78ea5463</cites><orcidid>0000-0003-2393-209X ; 0000-0002-7672-9389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Burke, Ollie</creatorcontrib><creatorcontrib>Gair, Jonathan R.</creatorcontrib><creatorcontrib>Simón, Joan</creatorcontrib><creatorcontrib>Edwards, Matthew C.</creatorcontrib><title>Constraining the spin parameter of near-extremal black holes using LISA</title><title>Physical review. D</title><description>We describe a model that generates first order adiabatic extreme mass ratio inspiral waveforms for quasicircular equatorial inspirals of compact objects into rapidly rotating (near-extremal) black holes. Using our model, we show that LISA could measure the spin parameter of near-extremal black holes (for a ≳ 0.9999) with extraordinary precision, ∼3 − 4 orders of magnitude better than for moderate spins, a ∼ 0.9. Such spin measurements would be one of the tightest measurements of an astrophysical parameter within a gravitational wave context. Our results are primarily based off a Fisher matrix analysis, but are verified using both frequentist and Bayesian techniques. We present analytical arguments that explain these high spin precision measurements. The high precision arises from the spin dependence of the radial inspiral evolution, which is dominated by geodesic properties of the secondary orbit, rather than radiation reaction. High precision measurements are only possible if we observe the exponential damping of the signal that is characteristic of the near-horizon regime of near-extremal inspirals. Our results demonstrate that, if such black holes exist, LISA would be able to successfully identify rapidly rotating black holes up to a = 1 − 10−9, far past the Thorne limit of a = 0.998.</description><subject>Black holes</subject><subject>Damping</subject><subject>Gravitational waves</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>Parameters</subject><subject>Rotation</subject><subject>Waveforms</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOOZ-gTcBrztzTrJmvRxTt8FA8eM6pOmJ6-zamnTi_r0dU6_Oy-H9gIexaxBjACFvnzaH-Exfd2MQOAZUYqLO2ACVFokQmJ3_axCXbBTjVvQyFZkGGLDFvKljF2xZl_U77zbEY1vWvLXB7qijwBvPa7Ihoe8u0M5WPK-s--CbpqLI9_GYWq9eZlfswtsq0uj3Dtnbw_3rfJmsHxer-WydOInYJWhzLAjAe7IT7QsqhEQ39ehT7XOnlVL5xDm0aa6BwErrbZH5zOlpH1CpHLKbU28bms89xc5sm32o-0mDagoZCpVB75InlwtNjIG8aUO5s-FgQJgjNPMHrX-gOUGTP0LzYgY</recordid><startdate>20201222</startdate><enddate>20201222</enddate><creator>Burke, Ollie</creator><creator>Gair, Jonathan R.</creator><creator>Simón, Joan</creator><creator>Edwards, Matthew C.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2393-209X</orcidid><orcidid>https://orcid.org/0000-0002-7672-9389</orcidid></search><sort><creationdate>20201222</creationdate><title>Constraining the spin parameter of near-extremal black holes using LISA</title><author>Burke, Ollie ; Gair, Jonathan R. ; Simón, Joan ; Edwards, Matthew C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-2ab2de11ffea57fded032c8f2f67fbc7444b5cc2a6b71e1a3afad9f9c78ea5463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Black holes</topic><topic>Damping</topic><topic>Gravitational waves</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>Parameters</topic><topic>Rotation</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burke, Ollie</creatorcontrib><creatorcontrib>Gair, Jonathan R.</creatorcontrib><creatorcontrib>Simón, Joan</creatorcontrib><creatorcontrib>Edwards, Matthew C.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burke, Ollie</au><au>Gair, Jonathan R.</au><au>Simón, Joan</au><au>Edwards, Matthew C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraining the spin parameter of near-extremal black holes using LISA</atitle><jtitle>Physical review. D</jtitle><date>2020-12-22</date><risdate>2020</risdate><volume>102</volume><issue>12</issue><spage>124054-1</spage><pages>124054-1-</pages><artnum>124054</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We describe a model that generates first order adiabatic extreme mass ratio inspiral waveforms for quasicircular equatorial inspirals of compact objects into rapidly rotating (near-extremal) black holes. Using our model, we show that LISA could measure the spin parameter of near-extremal black holes (for a ≳ 0.9999) with extraordinary precision, ∼3 − 4 orders of magnitude better than for moderate spins, a ∼ 0.9. Such spin measurements would be one of the tightest measurements of an astrophysical parameter within a gravitational wave context. Our results are primarily based off a Fisher matrix analysis, but are verified using both frequentist and Bayesian techniques. We present analytical arguments that explain these high spin precision measurements. The high precision arises from the spin dependence of the radial inspiral evolution, which is dominated by geodesic properties of the secondary orbit, rather than radiation reaction. High precision measurements are only possible if we observe the exponential damping of the signal that is characteristic of the near-horizon regime of near-extremal inspirals. Our results demonstrate that, if such black holes exist, LISA would be able to successfully identify rapidly rotating black holes up to a = 1 − 10−9, far past the Thorne limit of a = 0.998.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.102.124054</doi><orcidid>https://orcid.org/0000-0003-2393-209X</orcidid><orcidid>https://orcid.org/0000-0002-7672-9389</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2020-12, Vol.102 (12), p.124054-1, Article 124054
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2481920491
source American Physical Society Journals
subjects Black holes
Damping
Gravitational waves
Mathematical models
Matrix methods
Parameters
Rotation
Waveforms
title Constraining the spin parameter of near-extremal black holes using LISA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraining%20the%20spin%20parameter%20of%20near-extremal%20black%20holes%20using%20LISA&rft.jtitle=Physical%20review.%20D&rft.au=Burke,%20Ollie&rft.date=2020-12-22&rft.volume=102&rft.issue=12&rft.spage=124054-1&rft.pages=124054-1-&rft.artnum=124054&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.102.124054&rft_dat=%3Cproquest_cross%3E2481920491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481920491&rft_id=info:pmid/&rfr_iscdi=true