Inequalities for the Berezin number of operators and related questions
For a bounded linear operator, acting in the reproducing kernel Hilbert space H = H Ω over some set Ω , its Berezin symbol (or Berezin transform) A ~ is defined by A ~ λ : = A k ^ λ , k ^ λ , λ ∈ Ω , which is a bounded complex-valued function on Ω ; here k ^ λ : = k ^ λ k λ H is the normalized repro...
Gespeichert in:
Veröffentlicht in: | Complex analysis and operator theory 2021-03, Vol.15 (2), Article 30 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Complex analysis and operator theory |
container_volume | 15 |
creator | Garayev, M. T. Alomari, M. W. |
description | For a bounded linear operator, acting in the reproducing kernel Hilbert space
H
=
H
Ω
over some set
Ω
, its Berezin symbol (or Berezin transform)
A
~
is defined by
A
~
λ
:
=
A
k
^
λ
,
k
^
λ
,
λ
∈
Ω
,
which is a bounded complex-valued function on
Ω
;
here
k
^
λ
:
=
k
^
λ
k
λ
H
is the normalized reproducing kernel of
H
. The Berezin set and the Berezin number of an operator
A
are defined respectively by
Ber
A
:
=
Range
A
~
=
A
~
λ
:
λ
∈
Ω
and
ber
A
:
=
sup
γ
:
γ
∈
Ber
A
=
sup
λ
∈
Ω
A
~
λ
.
Since
Ber
A
⊂
W
A
(numerical range) and
ber
A
≤
w
A
(numerical radius), it is natural to investigate these new numerical quantities of operators and to get some similar results as for numerical range and numerical radius. In this paper, we prove many different type inequalities, including power inequality
ber
A
n
≤
ber
A
n
for the Berezin number of operators. We also study the uncertainty principle for Berezin symbols and we describe spectrum and compactness of functions of model operator in terms of Berezin symbols. Some related problems for de Branges-Rovnyak space operators are also discussed. |
doi_str_mv | 10.1007/s11785-021-01078-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2481873059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481873059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ead6b7bd959fc2c7897ebb050f46cdf47dd58e27537d1647395537b03199e3523</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5gsMRtsJ36NUPGoVIkFZsuJryFVG7d2MsCvxzQINqZ7hvOdK30IXTJ6zShVN5kxpQWhnBHKqNJEHaEZk5IRzSU__s2iPkVnOa8plVQZM0MPyx72o9t0QwcZh5jw8A74DhJ8dj3ux20DCceA4w6SG2LK2PUeJ9i4ATzej5CHLvb5HJ0Et8lw8XPn6PXh_mXxRFbPj8vF7Yq0FTMDAedloxpvhAktb5U2CpqGChpq2fpQK--FBq5EpTyTtaqMKLGhBTZQCV7N0dW0u0vx8Nyu45j68tLyWjOtKipMafGp1aaYc4Jgd6nbuvRhGbXfvuzkyxZf9uDLqgJVE5RLuX-D9Df9D_UFRHptZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481873059</pqid></control><display><type>article</type><title>Inequalities for the Berezin number of operators and related questions</title><source>Springer Nature - Complete Springer Journals</source><creator>Garayev, M. T. ; Alomari, M. W.</creator><creatorcontrib>Garayev, M. T. ; Alomari, M. W.</creatorcontrib><description>For a bounded linear operator, acting in the reproducing kernel Hilbert space
H
=
H
Ω
over some set
Ω
, its Berezin symbol (or Berezin transform)
A
~
is defined by
A
~
λ
:
=
A
k
^
λ
,
k
^
λ
,
λ
∈
Ω
,
which is a bounded complex-valued function on
Ω
;
here
k
^
λ
:
=
k
^
λ
k
λ
H
is the normalized reproducing kernel of
H
. The Berezin set and the Berezin number of an operator
A
are defined respectively by
Ber
A
:
=
Range
A
~
=
A
~
λ
:
λ
∈
Ω
and
ber
A
:
=
sup
γ
:
γ
∈
Ber
A
=
sup
λ
∈
Ω
A
~
λ
.
Since
Ber
A
⊂
W
A
(numerical range) and
ber
A
≤
w
A
(numerical radius), it is natural to investigate these new numerical quantities of operators and to get some similar results as for numerical range and numerical radius. In this paper, we prove many different type inequalities, including power inequality
ber
A
n
≤
ber
A
n
for the Berezin number of operators. We also study the uncertainty principle for Berezin symbols and we describe spectrum and compactness of functions of model operator in terms of Berezin symbols. Some related problems for de Branges-Rovnyak space operators are also discussed.</description><identifier>ISSN: 1661-8254</identifier><identifier>EISSN: 1661-8262</identifier><identifier>DOI: 10.1007/s11785-021-01078-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Hilbert space ; Inequalities ; Kernels ; Linear operators ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Operators (mathematics) ; Reproducing kernel spaces and applications ; Symbols</subject><ispartof>Complex analysis and operator theory, 2021-03, Vol.15 (2), Article 30</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ead6b7bd959fc2c7897ebb050f46cdf47dd58e27537d1647395537b03199e3523</citedby><cites>FETCH-LOGICAL-c319t-ead6b7bd959fc2c7897ebb050f46cdf47dd58e27537d1647395537b03199e3523</cites><orcidid>0000-0002-1715-7165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11785-021-01078-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11785-021-01078-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Garayev, M. T.</creatorcontrib><creatorcontrib>Alomari, M. W.</creatorcontrib><title>Inequalities for the Berezin number of operators and related questions</title><title>Complex analysis and operator theory</title><addtitle>Complex Anal. Oper. Theory</addtitle><description>For a bounded linear operator, acting in the reproducing kernel Hilbert space
H
=
H
Ω
over some set
Ω
, its Berezin symbol (or Berezin transform)
A
~
is defined by
A
~
λ
:
=
A
k
^
λ
,
k
^
λ
,
λ
∈
Ω
,
which is a bounded complex-valued function on
Ω
;
here
k
^
λ
:
=
k
^
λ
k
λ
H
is the normalized reproducing kernel of
H
. The Berezin set and the Berezin number of an operator
A
are defined respectively by
Ber
A
:
=
Range
A
~
=
A
~
λ
:
λ
∈
Ω
and
ber
A
:
=
sup
γ
:
γ
∈
Ber
A
=
sup
λ
∈
Ω
A
~
λ
.
Since
Ber
A
⊂
W
A
(numerical range) and
ber
A
≤
w
A
(numerical radius), it is natural to investigate these new numerical quantities of operators and to get some similar results as for numerical range and numerical radius. In this paper, we prove many different type inequalities, including power inequality
ber
A
n
≤
ber
A
n
for the Berezin number of operators. We also study the uncertainty principle for Berezin symbols and we describe spectrum and compactness of functions of model operator in terms of Berezin symbols. Some related problems for de Branges-Rovnyak space operators are also discussed.</description><subject>Analysis</subject><subject>Hilbert space</subject><subject>Inequalities</subject><subject>Kernels</subject><subject>Linear operators</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Operators (mathematics)</subject><subject>Reproducing kernel spaces and applications</subject><subject>Symbols</subject><issn>1661-8254</issn><issn>1661-8262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwB5gsMRtsJ36NUPGoVIkFZsuJryFVG7d2MsCvxzQINqZ7hvOdK30IXTJ6zShVN5kxpQWhnBHKqNJEHaEZk5IRzSU__s2iPkVnOa8plVQZM0MPyx72o9t0QwcZh5jw8A74DhJ8dj3ux20DCceA4w6SG2LK2PUeJ9i4ATzej5CHLvb5HJ0Et8lw8XPn6PXh_mXxRFbPj8vF7Yq0FTMDAedloxpvhAktb5U2CpqGChpq2fpQK--FBq5EpTyTtaqMKLGhBTZQCV7N0dW0u0vx8Nyu45j68tLyWjOtKipMafGp1aaYc4Jgd6nbuvRhGbXfvuzkyxZf9uDLqgJVE5RLuX-D9Df9D_UFRHptZA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Garayev, M. T.</creator><creator>Alomari, M. W.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1715-7165</orcidid></search><sort><creationdate>20210301</creationdate><title>Inequalities for the Berezin number of operators and related questions</title><author>Garayev, M. T. ; Alomari, M. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ead6b7bd959fc2c7897ebb050f46cdf47dd58e27537d1647395537b03199e3523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Hilbert space</topic><topic>Inequalities</topic><topic>Kernels</topic><topic>Linear operators</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Operators (mathematics)</topic><topic>Reproducing kernel spaces and applications</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garayev, M. T.</creatorcontrib><creatorcontrib>Alomari, M. W.</creatorcontrib><collection>CrossRef</collection><jtitle>Complex analysis and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garayev, M. T.</au><au>Alomari, M. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inequalities for the Berezin number of operators and related questions</atitle><jtitle>Complex analysis and operator theory</jtitle><stitle>Complex Anal. Oper. Theory</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>15</volume><issue>2</issue><artnum>30</artnum><issn>1661-8254</issn><eissn>1661-8262</eissn><abstract>For a bounded linear operator, acting in the reproducing kernel Hilbert space
H
=
H
Ω
over some set
Ω
, its Berezin symbol (or Berezin transform)
A
~
is defined by
A
~
λ
:
=
A
k
^
λ
,
k
^
λ
,
λ
∈
Ω
,
which is a bounded complex-valued function on
Ω
;
here
k
^
λ
:
=
k
^
λ
k
λ
H
is the normalized reproducing kernel of
H
. The Berezin set and the Berezin number of an operator
A
are defined respectively by
Ber
A
:
=
Range
A
~
=
A
~
λ
:
λ
∈
Ω
and
ber
A
:
=
sup
γ
:
γ
∈
Ber
A
=
sup
λ
∈
Ω
A
~
λ
.
Since
Ber
A
⊂
W
A
(numerical range) and
ber
A
≤
w
A
(numerical radius), it is natural to investigate these new numerical quantities of operators and to get some similar results as for numerical range and numerical radius. In this paper, we prove many different type inequalities, including power inequality
ber
A
n
≤
ber
A
n
for the Berezin number of operators. We also study the uncertainty principle for Berezin symbols and we describe spectrum and compactness of functions of model operator in terms of Berezin symbols. Some related problems for de Branges-Rovnyak space operators are also discussed.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11785-021-01078-7</doi><orcidid>https://orcid.org/0000-0002-1715-7165</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-8254 |
ispartof | Complex analysis and operator theory, 2021-03, Vol.15 (2), Article 30 |
issn | 1661-8254 1661-8262 |
language | eng |
recordid | cdi_proquest_journals_2481873059 |
source | Springer Nature - Complete Springer Journals |
subjects | Analysis Hilbert space Inequalities Kernels Linear operators Mathematical analysis Mathematics Mathematics and Statistics Operator Theory Operators (mathematics) Reproducing kernel spaces and applications Symbols |
title | Inequalities for the Berezin number of operators and related questions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inequalities%20for%20the%20Berezin%20number%20of%20operators%20and%20related%20questions&rft.jtitle=Complex%20analysis%20and%20operator%20theory&rft.au=Garayev,%20M.%20T.&rft.date=2021-03-01&rft.volume=15&rft.issue=2&rft.artnum=30&rft.issn=1661-8254&rft.eissn=1661-8262&rft_id=info:doi/10.1007/s11785-021-01078-7&rft_dat=%3Cproquest_cross%3E2481873059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481873059&rft_id=info:pmid/&rfr_iscdi=true |