Inequalities for the Berezin number of operators and related questions

For a bounded linear operator, acting in the reproducing kernel Hilbert space H = H Ω over some set Ω , its Berezin symbol (or Berezin transform) A ~ is defined by A ~ λ : = A k ^ λ , k ^ λ , λ ∈ Ω , which is a bounded complex-valued function on Ω ; here k ^ λ : = k ^ λ k λ H is the normalized repro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2021-03, Vol.15 (2), Article 30
Hauptverfasser: Garayev, M. T., Alomari, M. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Complex analysis and operator theory
container_volume 15
creator Garayev, M. T.
Alomari, M. W.
description For a bounded linear operator, acting in the reproducing kernel Hilbert space H = H Ω over some set Ω , its Berezin symbol (or Berezin transform) A ~ is defined by A ~ λ : = A k ^ λ , k ^ λ , λ ∈ Ω , which is a bounded complex-valued function on Ω ; here k ^ λ : = k ^ λ k λ H is the normalized reproducing kernel of H . The Berezin set and the Berezin number of an operator A are defined respectively by Ber A : = Range A ~ = A ~ λ : λ ∈ Ω and ber A : = sup γ : γ ∈ Ber A = sup λ ∈ Ω A ~ λ . Since Ber A ⊂ W A (numerical range) and ber A ≤ w A (numerical radius), it is natural to investigate these new numerical quantities of operators and to get some similar results as for numerical range and numerical radius. In this paper, we prove many different type inequalities, including power inequality ber A n ≤ ber A n for the Berezin number of operators. We also study the uncertainty principle for Berezin symbols and we describe spectrum and compactness of functions of model operator in terms of Berezin symbols. Some related problems for de Branges-Rovnyak space operators are also discussed.
doi_str_mv 10.1007/s11785-021-01078-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2481873059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481873059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ead6b7bd959fc2c7897ebb050f46cdf47dd58e27537d1647395537b03199e3523</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5gsMRtsJ36NUPGoVIkFZsuJryFVG7d2MsCvxzQINqZ7hvOdK30IXTJ6zShVN5kxpQWhnBHKqNJEHaEZk5IRzSU__s2iPkVnOa8plVQZM0MPyx72o9t0QwcZh5jw8A74DhJ8dj3ux20DCceA4w6SG2LK2PUeJ9i4ATzej5CHLvb5HJ0Et8lw8XPn6PXh_mXxRFbPj8vF7Yq0FTMDAedloxpvhAktb5U2CpqGChpq2fpQK--FBq5EpTyTtaqMKLGhBTZQCV7N0dW0u0vx8Nyu45j68tLyWjOtKipMafGp1aaYc4Jgd6nbuvRhGbXfvuzkyxZf9uDLqgJVE5RLuX-D9Df9D_UFRHptZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481873059</pqid></control><display><type>article</type><title>Inequalities for the Berezin number of operators and related questions</title><source>Springer Nature - Complete Springer Journals</source><creator>Garayev, M. T. ; Alomari, M. W.</creator><creatorcontrib>Garayev, M. T. ; Alomari, M. W.</creatorcontrib><description>For a bounded linear operator, acting in the reproducing kernel Hilbert space H = H Ω over some set Ω , its Berezin symbol (or Berezin transform) A ~ is defined by A ~ λ : = A k ^ λ , k ^ λ , λ ∈ Ω , which is a bounded complex-valued function on Ω ; here k ^ λ : = k ^ λ k λ H is the normalized reproducing kernel of H . The Berezin set and the Berezin number of an operator A are defined respectively by Ber A : = Range A ~ = A ~ λ : λ ∈ Ω and ber A : = sup γ : γ ∈ Ber A = sup λ ∈ Ω A ~ λ . Since Ber A ⊂ W A (numerical range) and ber A ≤ w A (numerical radius), it is natural to investigate these new numerical quantities of operators and to get some similar results as for numerical range and numerical radius. In this paper, we prove many different type inequalities, including power inequality ber A n ≤ ber A n for the Berezin number of operators. We also study the uncertainty principle for Berezin symbols and we describe spectrum and compactness of functions of model operator in terms of Berezin symbols. Some related problems for de Branges-Rovnyak space operators are also discussed.</description><identifier>ISSN: 1661-8254</identifier><identifier>EISSN: 1661-8262</identifier><identifier>DOI: 10.1007/s11785-021-01078-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Hilbert space ; Inequalities ; Kernels ; Linear operators ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Operators (mathematics) ; Reproducing kernel spaces and applications ; Symbols</subject><ispartof>Complex analysis and operator theory, 2021-03, Vol.15 (2), Article 30</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ead6b7bd959fc2c7897ebb050f46cdf47dd58e27537d1647395537b03199e3523</citedby><cites>FETCH-LOGICAL-c319t-ead6b7bd959fc2c7897ebb050f46cdf47dd58e27537d1647395537b03199e3523</cites><orcidid>0000-0002-1715-7165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11785-021-01078-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11785-021-01078-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Garayev, M. T.</creatorcontrib><creatorcontrib>Alomari, M. W.</creatorcontrib><title>Inequalities for the Berezin number of operators and related questions</title><title>Complex analysis and operator theory</title><addtitle>Complex Anal. Oper. Theory</addtitle><description>For a bounded linear operator, acting in the reproducing kernel Hilbert space H = H Ω over some set Ω , its Berezin symbol (or Berezin transform) A ~ is defined by A ~ λ : = A k ^ λ , k ^ λ , λ ∈ Ω , which is a bounded complex-valued function on Ω ; here k ^ λ : = k ^ λ k λ H is the normalized reproducing kernel of H . The Berezin set and the Berezin number of an operator A are defined respectively by Ber A : = Range A ~ = A ~ λ : λ ∈ Ω and ber A : = sup γ : γ ∈ Ber A = sup λ ∈ Ω A ~ λ . Since Ber A ⊂ W A (numerical range) and ber A ≤ w A (numerical radius), it is natural to investigate these new numerical quantities of operators and to get some similar results as for numerical range and numerical radius. In this paper, we prove many different type inequalities, including power inequality ber A n ≤ ber A n for the Berezin number of operators. We also study the uncertainty principle for Berezin symbols and we describe spectrum and compactness of functions of model operator in terms of Berezin symbols. Some related problems for de Branges-Rovnyak space operators are also discussed.</description><subject>Analysis</subject><subject>Hilbert space</subject><subject>Inequalities</subject><subject>Kernels</subject><subject>Linear operators</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Operators (mathematics)</subject><subject>Reproducing kernel spaces and applications</subject><subject>Symbols</subject><issn>1661-8254</issn><issn>1661-8262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwB5gsMRtsJ36NUPGoVIkFZsuJryFVG7d2MsCvxzQINqZ7hvOdK30IXTJ6zShVN5kxpQWhnBHKqNJEHaEZk5IRzSU__s2iPkVnOa8plVQZM0MPyx72o9t0QwcZh5jw8A74DhJ8dj3ux20DCceA4w6SG2LK2PUeJ9i4ATzej5CHLvb5HJ0Et8lw8XPn6PXh_mXxRFbPj8vF7Yq0FTMDAedloxpvhAktb5U2CpqGChpq2fpQK--FBq5EpTyTtaqMKLGhBTZQCV7N0dW0u0vx8Nyu45j68tLyWjOtKipMafGp1aaYc4Jgd6nbuvRhGbXfvuzkyxZf9uDLqgJVE5RLuX-D9Df9D_UFRHptZA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Garayev, M. T.</creator><creator>Alomari, M. W.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1715-7165</orcidid></search><sort><creationdate>20210301</creationdate><title>Inequalities for the Berezin number of operators and related questions</title><author>Garayev, M. T. ; Alomari, M. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ead6b7bd959fc2c7897ebb050f46cdf47dd58e27537d1647395537b03199e3523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Hilbert space</topic><topic>Inequalities</topic><topic>Kernels</topic><topic>Linear operators</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Operators (mathematics)</topic><topic>Reproducing kernel spaces and applications</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garayev, M. T.</creatorcontrib><creatorcontrib>Alomari, M. W.</creatorcontrib><collection>CrossRef</collection><jtitle>Complex analysis and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garayev, M. T.</au><au>Alomari, M. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inequalities for the Berezin number of operators and related questions</atitle><jtitle>Complex analysis and operator theory</jtitle><stitle>Complex Anal. Oper. Theory</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>15</volume><issue>2</issue><artnum>30</artnum><issn>1661-8254</issn><eissn>1661-8262</eissn><abstract>For a bounded linear operator, acting in the reproducing kernel Hilbert space H = H Ω over some set Ω , its Berezin symbol (or Berezin transform) A ~ is defined by A ~ λ : = A k ^ λ , k ^ λ , λ ∈ Ω , which is a bounded complex-valued function on Ω ; here k ^ λ : = k ^ λ k λ H is the normalized reproducing kernel of H . The Berezin set and the Berezin number of an operator A are defined respectively by Ber A : = Range A ~ = A ~ λ : λ ∈ Ω and ber A : = sup γ : γ ∈ Ber A = sup λ ∈ Ω A ~ λ . Since Ber A ⊂ W A (numerical range) and ber A ≤ w A (numerical radius), it is natural to investigate these new numerical quantities of operators and to get some similar results as for numerical range and numerical radius. In this paper, we prove many different type inequalities, including power inequality ber A n ≤ ber A n for the Berezin number of operators. We also study the uncertainty principle for Berezin symbols and we describe spectrum and compactness of functions of model operator in terms of Berezin symbols. Some related problems for de Branges-Rovnyak space operators are also discussed.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11785-021-01078-7</doi><orcidid>https://orcid.org/0000-0002-1715-7165</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1661-8254
ispartof Complex analysis and operator theory, 2021-03, Vol.15 (2), Article 30
issn 1661-8254
1661-8262
language eng
recordid cdi_proquest_journals_2481873059
source Springer Nature - Complete Springer Journals
subjects Analysis
Hilbert space
Inequalities
Kernels
Linear operators
Mathematical analysis
Mathematics
Mathematics and Statistics
Operator Theory
Operators (mathematics)
Reproducing kernel spaces and applications
Symbols
title Inequalities for the Berezin number of operators and related questions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inequalities%20for%20the%20Berezin%20number%20of%20operators%20and%20related%20questions&rft.jtitle=Complex%20analysis%20and%20operator%20theory&rft.au=Garayev,%20M.%20T.&rft.date=2021-03-01&rft.volume=15&rft.issue=2&rft.artnum=30&rft.issn=1661-8254&rft.eissn=1661-8262&rft_id=info:doi/10.1007/s11785-021-01078-7&rft_dat=%3Cproquest_cross%3E2481873059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481873059&rft_id=info:pmid/&rfr_iscdi=true