W18O49/N-doped reduced graphene oxide hybrid architectures for full-spectrum photocatalytic degradation of organic contaminants in water
Full-spectrum photocatalysis from ultraviolet to near infrared has generated immense scientific interest in environmental purification and energy conversion, which is still a huge challenge. Herein, we utilized a solution combustion method to prepare W18O49/N-doped reduced graphene oxide (N-rGO) hyb...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2021-01, Vol.9 (3), p.829-835 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Full-spectrum photocatalysis from ultraviolet to near infrared has generated immense scientific interest in environmental purification and energy conversion, which is still a huge challenge. Herein, we utilized a solution combustion method to prepare W18O49/N-doped reduced graphene oxide (N-rGO) hybrid nanomaterials for full-spectrum photocatalytic degradation, which degraded organic dye molecules within a short reaction time (45 min) and demonstrated a high degradation rate (more than 90%) and a low initial concentration of degradation (50 mg L-1). Moreover, the relationship between irradiation light source, temperature, time, photocatalytic properties and photocatalytic mechanism of the degraded organic dye molecules have been investigated. This research afforded a full-spectrum photocatalyst for effectively removing organic dyes under any wavelength range of sunlight, whether UV, Vis or NIR light. |
---|---|
ISSN: | 2050-7526 2050-7534 |
DOI: | 10.1039/d0tc05511e |