Non-parametric optimization technique for water distribution in pipe networks

Water distribution networks (WDN) contribute the massive cost of pipes in total water distribution system (WDS) design, thus the optimal design of any WDN is more of a necessity than a requirement. Various evolutionary algorithms (EAs) proposed in the past involve the use of algorithm-specific param...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science & technology. Water supply 2020-12, Vol.20 (8), p.3068-3082
Hauptverfasser: Palod, Nikita, Prasad, Vishnu, Khare, Ruchi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3082
container_issue 8
container_start_page 3068
container_title Water science & technology. Water supply
container_volume 20
creator Palod, Nikita
Prasad, Vishnu
Khare, Ruchi
description Water distribution networks (WDN) contribute the massive cost of pipes in total water distribution system (WDS) design, thus the optimal design of any WDN is more of a necessity than a requirement. Various evolutionary algorithms (EAs) proposed in the past involve the use of algorithm-specific parameters and their synchronizing to get the optimal solution and thus require more computational effort and time. To overcome this drawback, the present work introduces an optimization technique, JayaNet, which is the integration of the Jaya algorithm and hydraulic network solver EPANET 2. The best part of this technique is that no algorithm-specific parameter is to be synchronized for optimal cost but there needs to be adjustment of penalty parameter and population size based on network size. Four well-known benchmark networks with different sizes and layout have been taken and optimized using JayaNet. The results are compared with those obtained from other EAs. It is found that optimized costs obtained for four networks by JayaNet are either the same or less than the results obtained from other EAs even with a lower number of function evaluations (NFE). The NFE are found to increase with population size in all networks. The statistical parameter obtained from JayaNet is also compared for different networks.
doi_str_mv 10.2166/ws.2020.200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2481237484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481237484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-70f1c96797384242b3be4cadea7051aa6f938a1e954dba2fe0247c6997833bd3</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsr_0DApUy9eTSPpRStQtVN90Mmk8FUOxmTDIP-emPr5t574OOew0HomsCCEiHuprSgQIsAOEEzIkBWILU6Pdyi0pLrc3SR0g6ASknoDL28hr4aTDR7l6O3OAzZ7_2PyT70ODv73vuv0eEuRDyZ7CJufSpgMx4A3-PBDw73Lk8hfqRLdNaZz-Su_vccbR8ftqunavO2fl7dbypLtcqVhI5YLaSWTHHKacMax61pnZGwJMaITjNliNNL3jaGdg4ol1ZoLRVjTcvm6Ob4doihpEu53oUx9sWxplwRyiRXvFC3R8rGkFJ0XT1EvzfxuyZQ_9VVT4UvdZUB7Bf60l42</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481237484</pqid></control><display><type>article</type><title>Non-parametric optimization technique for water distribution in pipe networks</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Palod, Nikita ; Prasad, Vishnu ; Khare, Ruchi</creator><creatorcontrib>Palod, Nikita ; Prasad, Vishnu ; Khare, Ruchi</creatorcontrib><description>Water distribution networks (WDN) contribute the massive cost of pipes in total water distribution system (WDS) design, thus the optimal design of any WDN is more of a necessity than a requirement. Various evolutionary algorithms (EAs) proposed in the past involve the use of algorithm-specific parameters and their synchronizing to get the optimal solution and thus require more computational effort and time. To overcome this drawback, the present work introduces an optimization technique, JayaNet, which is the integration of the Jaya algorithm and hydraulic network solver EPANET 2. The best part of this technique is that no algorithm-specific parameter is to be synchronized for optimal cost but there needs to be adjustment of penalty parameter and population size based on network size. Four well-known benchmark networks with different sizes and layout have been taken and optimized using JayaNet. The results are compared with those obtained from other EAs. It is found that optimized costs obtained for four networks by JayaNet are either the same or less than the results obtained from other EAs even with a lower number of function evaluations (NFE). The NFE are found to increase with population size in all networks. The statistical parameter obtained from JayaNet is also compared for different networks.</description><identifier>ISSN: 1606-9749</identifier><identifier>EISSN: 1607-0798</identifier><identifier>DOI: 10.2166/ws.2020.200</identifier><language>eng</language><publisher>London: IWA Publishing</publisher><subject>Algorithms ; Computer applications ; Design ; Design optimization ; Distribution ; Evolutionary algorithms ; Genetic algorithms ; Linear programming ; Mutation ; Networks ; Nonparametric statistics ; Optimization ; Optimization techniques ; Parameters ; Population ; Population (statistical) ; Population number ; Simulation ; Synchronism ; Water distribution ; Water distribution systems ; Water engineering ; Water shortages</subject><ispartof>Water science &amp; technology. Water supply, 2020-12, Vol.20 (8), p.3068-3082</ispartof><rights>Copyright IWA Publishing Dec 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-70f1c96797384242b3be4cadea7051aa6f938a1e954dba2fe0247c6997833bd3</citedby><cites>FETCH-LOGICAL-c298t-70f1c96797384242b3be4cadea7051aa6f938a1e954dba2fe0247c6997833bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Palod, Nikita</creatorcontrib><creatorcontrib>Prasad, Vishnu</creatorcontrib><creatorcontrib>Khare, Ruchi</creatorcontrib><title>Non-parametric optimization technique for water distribution in pipe networks</title><title>Water science &amp; technology. Water supply</title><description>Water distribution networks (WDN) contribute the massive cost of pipes in total water distribution system (WDS) design, thus the optimal design of any WDN is more of a necessity than a requirement. Various evolutionary algorithms (EAs) proposed in the past involve the use of algorithm-specific parameters and their synchronizing to get the optimal solution and thus require more computational effort and time. To overcome this drawback, the present work introduces an optimization technique, JayaNet, which is the integration of the Jaya algorithm and hydraulic network solver EPANET 2. The best part of this technique is that no algorithm-specific parameter is to be synchronized for optimal cost but there needs to be adjustment of penalty parameter and population size based on network size. Four well-known benchmark networks with different sizes and layout have been taken and optimized using JayaNet. The results are compared with those obtained from other EAs. It is found that optimized costs obtained for four networks by JayaNet are either the same or less than the results obtained from other EAs even with a lower number of function evaluations (NFE). The NFE are found to increase with population size in all networks. The statistical parameter obtained from JayaNet is also compared for different networks.</description><subject>Algorithms</subject><subject>Computer applications</subject><subject>Design</subject><subject>Design optimization</subject><subject>Distribution</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Linear programming</subject><subject>Mutation</subject><subject>Networks</subject><subject>Nonparametric statistics</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Parameters</subject><subject>Population</subject><subject>Population (statistical)</subject><subject>Population number</subject><subject>Simulation</subject><subject>Synchronism</subject><subject>Water distribution</subject><subject>Water distribution systems</subject><subject>Water engineering</subject><subject>Water shortages</subject><issn>1606-9749</issn><issn>1607-0798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkEtLAzEUhYMoWKsr_0DApUy9eTSPpRStQtVN90Mmk8FUOxmTDIP-emPr5t574OOew0HomsCCEiHuprSgQIsAOEEzIkBWILU6Pdyi0pLrc3SR0g6ASknoDL28hr4aTDR7l6O3OAzZ7_2PyT70ODv73vuv0eEuRDyZ7CJufSpgMx4A3-PBDw73Lk8hfqRLdNaZz-Su_vccbR8ftqunavO2fl7dbypLtcqVhI5YLaSWTHHKacMax61pnZGwJMaITjNliNNL3jaGdg4ol1ZoLRVjTcvm6Ob4doihpEu53oUx9sWxplwRyiRXvFC3R8rGkFJ0XT1EvzfxuyZQ_9VVT4UvdZUB7Bf60l42</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Palod, Nikita</creator><creator>Prasad, Vishnu</creator><creator>Khare, Ruchi</creator><general>IWA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20201201</creationdate><title>Non-parametric optimization technique for water distribution in pipe networks</title><author>Palod, Nikita ; Prasad, Vishnu ; Khare, Ruchi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-70f1c96797384242b3be4cadea7051aa6f938a1e954dba2fe0247c6997833bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer applications</topic><topic>Design</topic><topic>Design optimization</topic><topic>Distribution</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Linear programming</topic><topic>Mutation</topic><topic>Networks</topic><topic>Nonparametric statistics</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Parameters</topic><topic>Population</topic><topic>Population (statistical)</topic><topic>Population number</topic><topic>Simulation</topic><topic>Synchronism</topic><topic>Water distribution</topic><topic>Water distribution systems</topic><topic>Water engineering</topic><topic>Water shortages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palod, Nikita</creatorcontrib><creatorcontrib>Prasad, Vishnu</creatorcontrib><creatorcontrib>Khare, Ruchi</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Water science &amp; technology. Water supply</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palod, Nikita</au><au>Prasad, Vishnu</au><au>Khare, Ruchi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-parametric optimization technique for water distribution in pipe networks</atitle><jtitle>Water science &amp; technology. Water supply</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>20</volume><issue>8</issue><spage>3068</spage><epage>3082</epage><pages>3068-3082</pages><issn>1606-9749</issn><eissn>1607-0798</eissn><abstract>Water distribution networks (WDN) contribute the massive cost of pipes in total water distribution system (WDS) design, thus the optimal design of any WDN is more of a necessity than a requirement. Various evolutionary algorithms (EAs) proposed in the past involve the use of algorithm-specific parameters and their synchronizing to get the optimal solution and thus require more computational effort and time. To overcome this drawback, the present work introduces an optimization technique, JayaNet, which is the integration of the Jaya algorithm and hydraulic network solver EPANET 2. The best part of this technique is that no algorithm-specific parameter is to be synchronized for optimal cost but there needs to be adjustment of penalty parameter and population size based on network size. Four well-known benchmark networks with different sizes and layout have been taken and optimized using JayaNet. The results are compared with those obtained from other EAs. It is found that optimized costs obtained for four networks by JayaNet are either the same or less than the results obtained from other EAs even with a lower number of function evaluations (NFE). The NFE are found to increase with population size in all networks. The statistical parameter obtained from JayaNet is also compared for different networks.</abstract><cop>London</cop><pub>IWA Publishing</pub><doi>10.2166/ws.2020.200</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1606-9749
ispartof Water science & technology. Water supply, 2020-12, Vol.20 (8), p.3068-3082
issn 1606-9749
1607-0798
language eng
recordid cdi_proquest_journals_2481237484
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Computer applications
Design
Design optimization
Distribution
Evolutionary algorithms
Genetic algorithms
Linear programming
Mutation
Networks
Nonparametric statistics
Optimization
Optimization techniques
Parameters
Population
Population (statistical)
Population number
Simulation
Synchronism
Water distribution
Water distribution systems
Water engineering
Water shortages
title Non-parametric optimization technique for water distribution in pipe networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-parametric%20optimization%20technique%20for%20water%20distribution%20in%20pipe%20networks&rft.jtitle=Water%20science%20&%20technology.%20Water%20supply&rft.au=Palod,%20Nikita&rft.date=2020-12-01&rft.volume=20&rft.issue=8&rft.spage=3068&rft.epage=3082&rft.pages=3068-3082&rft.issn=1606-9749&rft.eissn=1607-0798&rft_id=info:doi/10.2166/ws.2020.200&rft_dat=%3Cproquest_cross%3E2481237484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481237484&rft_id=info:pmid/&rfr_iscdi=true