Strategies for solving the Fermi-Hubbard model on near-term quantum computers
The Fermi-Hubbard model is of fundamental importance in condensed-matter physics, yet is extremely challenging to solve numerically. Finding the ground state of the Hubbard model using variational methods has been predicted to be one of the first applications of near-term quantum computers. Here we...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2020-12, Vol.102 (23), p.1, Article 235122 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 102 |
creator | Cade, Chris Mineh, Lana Montanaro, Ashley Stanisic, Stasja |
description | The Fermi-Hubbard model is of fundamental importance in condensed-matter physics, yet is extremely challenging to solve numerically. Finding the ground state of the Hubbard model using variational methods has been predicted to be one of the first applications of near-term quantum computers. Here we carry out a detailed analysis and optimization of the complexity of variational quantum algorithms for finding the ground state of the Hubbard model, including costs associated with mapping to a real-world hardware platform. The depth complexities we find are substantially lower than previous work. We performed extensive numerical experiments for systems with up to 12 sites. The results suggest that the variational ansätze we used-an efficient variant of the Hamiltonian variational ansatz and a generalization thereof-will be able to find the ground state of the Hubbard model with high fidelity in relatively low quantum circuit depths. Our experiments include the effect of realistic measurements and depolarizing noise. If our numerical results on small lattice sizes are representative of the somewhat larger lattices accessible to near-term quantum hardware, they suggest that optimizing over quantum circuits with a gate depth less than a thousand could be sufficient to solve instances of the Hubbard model beyond the capacity of classical exact diagonalization. |
doi_str_mv | 10.1103/PhysRevB.102.235122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2481218288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481218288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-faee95f00761c951e8ccc0374b4e865c97fdf8106e0ec319ce378b7a83354fcd3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWGp_gZuA66k3yTySpRZrhYriYz1kMjftlM6kTTKF_vuOVF2dyzmHe-Aj5JbBlDEQ9-_rY_jAw-OUAZ9ykTHOL8iIp7lKlMrV5f-dwTWZhLABAJaDKkCNyOtn9DriqsFArfM0uO2h6VY0rpHO0bdNsuirSvuatq7GLXUd7VD7JA4Z3fe6i31LjWt3_eCEG3Jl9Tbg5FfH5Hv-9DVbJMu355fZwzIxQomYWI2oMgtQ5MyojKE0xoAo0ipFmWdGFba2kkGOgEYwZVAUsiq0FCJLranFmNyd_-682_cYYrlxve-GyZKnknEmuZRDS5xbxrsQPNpy55tW-2PJoPxBV_6hGwxentGJEwmWY-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481218288</pqid></control><display><type>article</type><title>Strategies for solving the Fermi-Hubbard model on near-term quantum computers</title><source>American Physical Society Journals</source><creator>Cade, Chris ; Mineh, Lana ; Montanaro, Ashley ; Stanisic, Stasja</creator><creatorcontrib>Cade, Chris ; Mineh, Lana ; Montanaro, Ashley ; Stanisic, Stasja</creatorcontrib><description>The Fermi-Hubbard model is of fundamental importance in condensed-matter physics, yet is extremely challenging to solve numerically. Finding the ground state of the Hubbard model using variational methods has been predicted to be one of the first applications of near-term quantum computers. Here we carry out a detailed analysis and optimization of the complexity of variational quantum algorithms for finding the ground state of the Hubbard model, including costs associated with mapping to a real-world hardware platform. The depth complexities we find are substantially lower than previous work. We performed extensive numerical experiments for systems with up to 12 sites. The results suggest that the variational ansätze we used-an efficient variant of the Hamiltonian variational ansatz and a generalization thereof-will be able to find the ground state of the Hubbard model with high fidelity in relatively low quantum circuit depths. Our experiments include the effect of realistic measurements and depolarizing noise. If our numerical results on small lattice sizes are representative of the somewhat larger lattices accessible to near-term quantum hardware, they suggest that optimizing over quantum circuits with a gate depth less than a thousand could be sufficient to solve instances of the Hubbard model beyond the capacity of classical exact diagonalization.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.235122</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Algorithms ; Circuits ; Condensed matter physics ; Depolarization ; Ground state ; Hardware ; Mathematical models ; Optimization ; Quantum computers ; Quantum computing ; Variational methods</subject><ispartof>Physical review. B, 2020-12, Vol.102 (23), p.1, Article 235122</ispartof><rights>Copyright American Physical Society Dec 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-faee95f00761c951e8ccc0374b4e865c97fdf8106e0ec319ce378b7a83354fcd3</citedby><cites>FETCH-LOGICAL-c393t-faee95f00761c951e8ccc0374b4e865c97fdf8106e0ec319ce378b7a83354fcd3</cites><orcidid>0000-0001-8599-1779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2874,2875,27922,27923</link.rule.ids></links><search><creatorcontrib>Cade, Chris</creatorcontrib><creatorcontrib>Mineh, Lana</creatorcontrib><creatorcontrib>Montanaro, Ashley</creatorcontrib><creatorcontrib>Stanisic, Stasja</creatorcontrib><title>Strategies for solving the Fermi-Hubbard model on near-term quantum computers</title><title>Physical review. B</title><description>The Fermi-Hubbard model is of fundamental importance in condensed-matter physics, yet is extremely challenging to solve numerically. Finding the ground state of the Hubbard model using variational methods has been predicted to be one of the first applications of near-term quantum computers. Here we carry out a detailed analysis and optimization of the complexity of variational quantum algorithms for finding the ground state of the Hubbard model, including costs associated with mapping to a real-world hardware platform. The depth complexities we find are substantially lower than previous work. We performed extensive numerical experiments for systems with up to 12 sites. The results suggest that the variational ansätze we used-an efficient variant of the Hamiltonian variational ansatz and a generalization thereof-will be able to find the ground state of the Hubbard model with high fidelity in relatively low quantum circuit depths. Our experiments include the effect of realistic measurements and depolarizing noise. If our numerical results on small lattice sizes are representative of the somewhat larger lattices accessible to near-term quantum hardware, they suggest that optimizing over quantum circuits with a gate depth less than a thousand could be sufficient to solve instances of the Hubbard model beyond the capacity of classical exact diagonalization.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Condensed matter physics</subject><subject>Depolarization</subject><subject>Ground state</subject><subject>Hardware</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Variational methods</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWGp_gZuA66k3yTySpRZrhYriYz1kMjftlM6kTTKF_vuOVF2dyzmHe-Aj5JbBlDEQ9-_rY_jAw-OUAZ9ykTHOL8iIp7lKlMrV5f-dwTWZhLABAJaDKkCNyOtn9DriqsFArfM0uO2h6VY0rpHO0bdNsuirSvuatq7GLXUd7VD7JA4Z3fe6i31LjWt3_eCEG3Jl9Tbg5FfH5Hv-9DVbJMu355fZwzIxQomYWI2oMgtQ5MyojKE0xoAo0ipFmWdGFba2kkGOgEYwZVAUsiq0FCJLranFmNyd_-682_cYYrlxve-GyZKnknEmuZRDS5xbxrsQPNpy55tW-2PJoPxBV_6hGwxentGJEwmWY-Y</recordid><startdate>20201210</startdate><enddate>20201210</enddate><creator>Cade, Chris</creator><creator>Mineh, Lana</creator><creator>Montanaro, Ashley</creator><creator>Stanisic, Stasja</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8599-1779</orcidid></search><sort><creationdate>20201210</creationdate><title>Strategies for solving the Fermi-Hubbard model on near-term quantum computers</title><author>Cade, Chris ; Mineh, Lana ; Montanaro, Ashley ; Stanisic, Stasja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-faee95f00761c951e8ccc0374b4e865c97fdf8106e0ec319ce378b7a83354fcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Condensed matter physics</topic><topic>Depolarization</topic><topic>Ground state</topic><topic>Hardware</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cade, Chris</creatorcontrib><creatorcontrib>Mineh, Lana</creatorcontrib><creatorcontrib>Montanaro, Ashley</creatorcontrib><creatorcontrib>Stanisic, Stasja</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cade, Chris</au><au>Mineh, Lana</au><au>Montanaro, Ashley</au><au>Stanisic, Stasja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategies for solving the Fermi-Hubbard model on near-term quantum computers</atitle><jtitle>Physical review. B</jtitle><date>2020-12-10</date><risdate>2020</risdate><volume>102</volume><issue>23</issue><spage>1</spage><pages>1-</pages><artnum>235122</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>The Fermi-Hubbard model is of fundamental importance in condensed-matter physics, yet is extremely challenging to solve numerically. Finding the ground state of the Hubbard model using variational methods has been predicted to be one of the first applications of near-term quantum computers. Here we carry out a detailed analysis and optimization of the complexity of variational quantum algorithms for finding the ground state of the Hubbard model, including costs associated with mapping to a real-world hardware platform. The depth complexities we find are substantially lower than previous work. We performed extensive numerical experiments for systems with up to 12 sites. The results suggest that the variational ansätze we used-an efficient variant of the Hamiltonian variational ansatz and a generalization thereof-will be able to find the ground state of the Hubbard model with high fidelity in relatively low quantum circuit depths. Our experiments include the effect of realistic measurements and depolarizing noise. If our numerical results on small lattice sizes are representative of the somewhat larger lattices accessible to near-term quantum hardware, they suggest that optimizing over quantum circuits with a gate depth less than a thousand could be sufficient to solve instances of the Hubbard model beyond the capacity of classical exact diagonalization.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.102.235122</doi><orcidid>https://orcid.org/0000-0001-8599-1779</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2020-12, Vol.102 (23), p.1, Article 235122 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2481218288 |
source | American Physical Society Journals |
subjects | Algorithms Circuits Condensed matter physics Depolarization Ground state Hardware Mathematical models Optimization Quantum computers Quantum computing Variational methods |
title | Strategies for solving the Fermi-Hubbard model on near-term quantum computers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategies%20for%20solving%20the%20Fermi-Hubbard%20model%20on%20near-term%20quantum%20computers&rft.jtitle=Physical%20review.%20B&rft.au=Cade,%20Chris&rft.date=2020-12-10&rft.volume=102&rft.issue=23&rft.spage=1&rft.pages=1-&rft.artnum=235122&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.235122&rft_dat=%3Cproquest_cross%3E2481218288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481218288&rft_id=info:pmid/&rfr_iscdi=true |